Электрический магнит своими руками

Как сделать электромагнит

Количество просмотров: 13135

Количество комментариев: 0

Электромагнит, в отличие от постоянного магнита, приобретает свои свойства только под воздействием электрического тока. С его помощью он меняет силу притяжения, направление полюсов и некоторые другие характеристики.

Некоторые увлеченные механикой люди самостоятельно делают электромагниты, чтобы использовать их в самодельных установках, механизмах и разнообразных конструкциях. Сделать электромагнит своими руками несложно. Используются простые приспособления и подручные материалы.

Что понадобится:

  • Один железный гвоздь 13-15 см. в длину или иной металлический предмет, который и станет сердечником электромагнита.
  • Около 3 метров изолированной медной проволоки.
  • Источник электропитания — аккумуляторная батарея или генератор.
  • Небольшие провода для контакта провода с батарейкой.
  • Изолирующие материалы.

Если вы используете более крупную металлическую заготовку для создания магнита, то количество медной проволоки должно пропорционально увеличиваться. Иначе магнитное поле получится слишком слабым. Сколько именно понадобится обмотки, точно ответить нельзя. Обычно мастера выясняют это экспериментальным путем, увеличивая и уменьшая количество проволоки, параллельно измеряя изменения магнитного поля. Из-за избытка проволоки сила магнитного поля тоже становится меньше.

Пошаговая инструкция

Следуя простым рекомендация, вы легко сделаете электромагнит самостоятельно.

Очистите от изоляции концы медного провода, который будете наматывать на сердечник. Достаточно 2-3 см. Они понадобятся, чтобы соединить медную проволоку с обычной, которая в свою очередь будет подключаться к источнику питания.

Вокруг гвоздя или другого сердечника аккуратно намотайте медный провод так, чтобы витки были расположены параллельно друг к другу. Делать это необходимо только в одном направлении. От этого зависит расположение полюсов будущего магнита. Если вы захотите изменить их расположение, то можно просто перемотать проволоку в другом направлении. Не выполнив этого условия, вы добьетесь того, что магнитные поля различных секций будут воздействовать друг на друга, из-за чего сила магнита будет минимальной.

Концы очищенного медного провода соедините с двумя заранее подготовленными обычными проводками. Соединение заизолируйте, а один конец проводка подключите к клемме положительного заряда на аккумуляторе, а другой — на противоположный конец. Причем неважно, какой проводок к какому концу будет подключен — это не отразится на эксплуатационных возможностях электромагнита. Если все сделано правильно, то магнит сразу же начнет работать! Если у аккумулятора есть реверсивный способ подключения, то вы сможете изменить направление полюсов.

Как повысить силу магнитного поля

Есть смысл поэкспериментировать с сердечниками. Возьмите более толстое основание — металлический брусок шириной 2-3 см. Узнать, насколько мощный получился электромагнит, позволит специальный прибор, измеряющий силу магнитного поля. С его помощью и методом экспериментов вы найдете золотую середину в создании электромагнита.

Электрический магнит своими руками

Для многих людей магнит до сих пор является загадкой, хотя с данным металлом и явлением в принципе, люди познакомилась очень давно. Уже тогда была разработана целая система по изготовлению различных магнитов. Сегодня же это далеко не редкость и даже мощные магниты можно сделать в домашних условиях.

Создание магнита с подручных средств

Конечно, для многих это покажется даже чем-то сверхъестественным и возможно даже будет шоком, но даже сейчас, сидя дома, большинство людей могут изготовить магнит своими руками. Ниже представлено четыре способа, в которых описано, как сделать мощный магнит в домашних условиях.

Первый и наверняка поэтому самый простой способ: для его осуществления нужно лишь взять любой предмет, который можно намагнитить (предмет должен быть металлическим) и провести им несколько раз вдоль постоянного магнита, причем делать это следует только в одном направлении. Но, к сожалению, такой магнит будет недолговечным и очень быстро потеряет свои магнитные свойства.

Данный метод намагничивания производится с помощью батарейки или аккумулятора на 5 или 12 вольт. Чаще всего он применятся для намагничивания отверток и выполняется следующим образом:

• Берется медная проволока определенной длины, которой будет достаточно для того, чтобы обмотать стержень отвертки 280 – 350 раз. Лучше всего подходит проволока из трансформаторов, или та, что предназначена для их производства.
• Изолируется предмет, в данном случае, при помощи изоленты выполняется обмотка всего стержня отвертки.
• Выполняется сама обмотка и подключение ее к батарее. Один конец – к плюсу, другой – к минусу. Обмотку следует проводить виток к витку, равномерно. Изоляция также должна быть плотной.

В результате данных манипуляций, с отверткой будет намного приятнее работать. Такой операцией можно превратить любые старые ненужные отвертки в действительно удобный инструмент.

Этот вариант описывает то, как сделать мощный магнит довольно простым способом. На самом деле он полностью уже был описан выше, но конкретно этот способ подразумевает под собой другой материал. В данном случае будет использоваться обычный металл, а точнее небольшой кусок из него, желательно кубической формы и более мощная катушка. Теперь количество витков нужно увеличить в 2-3 раза, чтобы намагничивание прошло успешно.

Этот метод очень опасен и категорически запрещен для исполнения людьми, не являющимися профессионалами в сфере электрики. Выполняется строго с соблюдением техники безопасности, главное помнить, что ответственность за жизнь и здоровье несете только Вы и никто больше.

Читайте также:  Тюль в спальню: плюсы и минусы, виды, как рассчитать размеры, правильная стирка

Он рассказывает о том, как сделать сильный магнит в домашних условиях, при этом затратив небольшую сумму денег. В этом случае будет использоваться еще более мощная катушка, намотанная исключительно из меди, а также плавкий предохранитель для сети в 220 вольт.

Предохранитель нужен для того, чтобы катушку можно было вовремя отключить. Сразу же после подключения в сеть он сгорит, но при этом за такой промежуток времени успеет пройти процесс намагничивания. Сила тока в таком случае будет максимальной для сети и магнит будет достаточно мощным.

Мощный электромагнит своими руками

Во-первых, нужно разобраться с тем, что это такое. Электромагнит представляет из себя целое устройство, которое при подаче на него определенного тока, работает как обычный магнит. Сразу же после прекращения он теряет эти свойства. О том, как сделать мощный магнит из обычной катушки и железа было описано выше. Так вот, если вместо железа использовать магнитопровод, то как раз и получится тот самый электромагнит.

Для того, чтобы разобраться с тем, как сделать сильный магнит в домашних условиях, который будет работать от сети, нужно всего лишь вспомнить немного информации из курса школьной физики и понять, что при увеличении катушки, а также магнитопровода, возрастет и мощность магнита. Но при этом потребуется больше тока, для раскрытия полного потенциала магнита.

Но самыми мощными все же остаются именно неодимовые, они обладают всеми самыми желанными свойствами и при своей силе имеют небольшой размер и вес. О том, как делать неодимовые магниты собственными руками и возможно ли это вообще и пойдет речь дальше.

Изготовление неодимового магнита

Из-за сложного состава и специальной методики производства, вопрос о том, как сделать неодимовый магнит своими руками в домашних условиях отпадает сам собой. Но многих все же интересует, как делать неодимовые магниты, ведь, казалось бы, если можно сделать обычный магнит, то и неодимовый также вполне реально изготовить.

Но все не так просто, как кажется в действительности. Производством таких магнитов занимаются серьезные компании, они используют специальные технологии очень мощного намагничивания материала. И это помимо того, что используется достаточно сложный в добыче и производстве сплав. Поэтому на данный вопрос можно четко ответить – никак. Если у кого-то получится это сделать, то он с легкостью сможет открыть свое производство, так как необходимое оборудование у него уже будет.

Применение созданных магнитов

Применение в промышленно-хозяйственных целях

Применяются в различных электроприборах. Особенно часто встречаются в устройствах, оборудованных динамиками. Любая динамическая головка включает в себя магнит, ферритовый или неодимовый, в редких случаях используются и другие. Также используются магниты в мебельном производстве, игрушках. На производствах, при фильтрации сыпучих материалов.

Применение в домашних условиях

Магниты на холодильник – это одно из самых распространенных направлений применения магнитов. Также некоторые используют их для остановки счетчиков, для того чтобы снизить плату на коммунальные услуги, но делать так категорически запрещено, да и нецелесообразно.

Исходя из этой статьи можно понять то, как сделать мощный магнит в домашних условиях, при этом не затратив на это каких-то особых усилий и материальных средств. Но не стоит экспериментировать с мощной сетью людям, которые не разбираются в электричестве и вообще не имеют представления о том, как это работает, потому как это серьезно и очень опасно для жизни человека.

Электрический магнит своими руками

    Главная
  • Список секций
  • Физика
  • Электромагнит своими руками

Электромагнит своими руками

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Автор работы награжден дипломом победителя III степени

Когда я перешел в седьмой класс, моим самым любимым предметом стала физика. В ней много всего интересного. У моего старшего брата много книг по физике, я попросил почитать и наткнулся на тему «Электромагнит». С дедушкой я смотрел передачу про строительство высотных домов, в которой показали как кран поднял стройматериалы без тросов, дедушка объяснил мне, что здесь использовали электромагнит. Мне захотелось разобраться в этой теме.

Цель работы: изучить устройство электромагнита, изготовить электромагнит из доступных материалов.

Задачи работы:

1)изучить и проанализировать литературу,

2) изучить принцип действия электромагнита,

3) изготовить электромагнит,

4) провести исследование.

Основные результаты : создана «Технологическая карта изготовления изделия», изготовлен электромагнит, проведено исследование.

Гипотеза: сила электромагнита зависит от напряжения на источнике тока.

1. Что такое магнит

Устройство, принцип работы и классификация

Электромагнит – это устройство, которое при прохождении через него тока, создает магнитное поле.

В 1820 году Эрстед обнаружил, что электрический ток создаёт магнитное поле. А затем, в 1824 году, Уильям Стёржден, создал первый электромагнит. Он представлял из себя кусок железа, который был согнут в форме подковы и на котором было намотано 18 витков медного провода. При подключении к источнику тока, эта конструкция начинала притягивать железные предметы. Причем было замечено, что хотя весил этот электромагнит около 200 гр., он мог притянуть предметы до 4 кг.

Читайте также:  Умная система отопления дома

Принцип действия: при протекании тока через проводник, вокруг него создается магнитное поле. Это магнитное поле можно усилить, если придать проводнику форму катушки. Но все же это еще не электромагнит. Вот если в эту катушку поместить сердечник из ферромагнитного материала (например, железа), тогда он станет электромагнитом (рисунок 1). Рисунок 1 – электромагнит

К огда ток протекает по обмотке электромагнита, он создает магнитное поле, линии которого пронизывают сердечник, то есть ферромагнитный материал. Под действием этого поля, в сердечнике, мельчайшие области, которые обладают миниатюрными магнитными полями, называющиеся доменами, принимают упорядоченное положение. В результате, их магнитные поля складываются, и образуется одно большое и сильное магнитное поле, способное притянуть большие предметы. Причем, чем сильнее ток, тем сильнее магнитное поле, которое образуется электромагнитом. Но так будет происходить только до магнитного насыщения. Затем при увеличении тока, магнитное поле будет увеличиваться, но незначительно. Если ток в электромагните убрать, то домены снова примут безупорядоченное положение, но часть их все же останется направленными одинаково. Эти оставшиеся направленными домены, будут создавать небольшое магнитное поле. Это явление называется магнитным гистерезисом.

Простейший электромагнит представляет из себя катушку с сердечником из ферромагнитного материала. В нем также присутствует якорь, который служит для передачи механического усилия. Например, в реле, якорь притягивается к электромагниту, и одновременно замыкает контакты. Так как линии магнитного поля замыкаются на якоре, это еще больше усиливает это магнитное поле.

Электромагниты по способу создания магнитного потока делятся на три вида:

Электромагниты переменного тока

Нейтральные электромагниты постоянного тока

Поляризованные электромагниты постоянного тока

В электромагнитах переменного тока, магнитный поток изменяется, как по направлению, так и по значению, разница только в том, что изменяется он с удвоенной частотой тока.

В нейтральных электромагнитах постоянного тока, направление магнитного потока не зависит от направления тока.

В поляризованных электромагнитах постоянного тока, как вы уже поняли, направление магнитного потока зависит от направления тока. При этом эти электромагниты обычно состоят из двух. Один – постоянный магнит, создает поляризующий магнитный поток, который нужен при отключении основного, рабочего электромагнита. 1

1.2 Использование электромагнита

Б ольшинство применений электромагнитов основано на их способности притягивать и удерживать предметы, в состав которых входит железо и некоторые его сплавы. Рассмотрим несколько примеров.

Электромагнитный подъёмный крансодержит очень мощный электромагнит и применяется на металлургических заводах для перемещения готовых изделий или металлического «лома», собранного для переработки (рисунок 3). Рисунок 3- кран
Электромагнитные столы часто применяют в станках на металлообрабатывающих предприятиях. Сверление, фрезерование и штамповка только тогда будут качественными, когда заготовка будет надёжно закреплена. На электромагнитном столе будущее изделие прочно удерживается притяжением мощных электромагнитов. Достаточно включить ток, чтобы закрепить заготовку в нужном положении на столе и выключить ток, чтобы освободить её.

М агнитные сепараторы (рисунок 4)применяют для отделения магнитных материалов от немагнитных. Это, например, необходимо для «обогащения руды» путём отделения кусков железной руды от не содержащей руды породы (см. рисунок). Это, например, очищение семян сельскохозяйственных растений от

семян сорняков. Рисунок 4- сепаратор

Происходит это следующим образом. Семена сорняков, как правило, покрыты многочисленными ворсинками, в которых «запутываются» специально добавляемые мелкие железные опилки. Поэтому в сильном магнитном поле семена сорняков отклоняются в сторону, отделяясь от полезных семян.
Электромагниты в военном деле применяются, например, в магнитных минах, взрывающихся при прохождении над ними кораблей или подводных лодок. Во время и после второй мировой войны большую роль играли специальные корабли – электромагнитные тральщики. Они очищали акватории от магнитных мин, заставляя их взрываться специально созданным магнитным полем вокруг корабля, плывущего на безопасном расстоянии.

Э лектромагнитные реле (рисунок 5) применяются в системах автоматики. Когда по обмотке электромагнита проходит ток, якорь притягивается к сердечнику и замыкает или размыкает контакты. В результате происходит включение или выключение тех приборов, которыми управляет реле. В каких случаях это необходимо?

Н апример, когда нужно создать «гальванический разрыв», то есть не допустить тока из управляемой цепи в управляющую. Или, например, когда нужно током малой силы (и, соответственно, тонкими и поэтому недорогими и негромоздкими проводами) управлять током большой силы в толстых, громоздких и дорогостоящих проводах (с целью удешевить проводку и сделать её более безопасной на всём протяжении). Способность переключения электрических цепей при помощи слабого сигнала важна для безопасной работы промышленных устройств большой мощности. При этом электромагнитные реле выполняют функцию усилителя сигнала.
Электромагнитные замки надёжно запирают стальные ворота на заводах и двери в подъездах домов. Для их открывания нужно набрать особый код. Цепь размыкается, притяжение исчезает, и замок можно легко открыть.

Читайте также:  Цвета ламината для пола: подбор и сочетаемость с интерьером

Электромагнитные дороги (рисунок 6)для скоростных транспортных средств создают над своей поверхностью так называемую «магнитную подушку». Взаимодействующие магнитные поля магнитов дороги и днища поезда удерживают его на высоте нескольких сантиметров и одновременно толкают вперёд, включаясь в момент приближения поезда и выключаясь после его проезда.

Электромагниты в ускорителях (специальных научных устройствах, в которых изучаются заряженные частицы) своим магнитным полем поддерживают круговую траекторию частиц постоянного радиуса. Пучки таких частиц, летящих с огромными скоростями, являются основным средством изучения природы и свойств элементарных частиц. Крупнейший в мире электромагнит является частью детектора L3, используемого в экспериментах на большом коллайдере Европейского совета ядерных исследований, Швейцария. Габариты электромагнита, превосходящие высоту 4 этажного здания, составляют 12х12х12 м, а общая масса 7810 т. 2

2. Изготовление электромагнита

2.1. Технологическая карта

Нами была разработана технологическая карта изготовления электромагнита, которая представлена в таблице 1.

Мощный соленоид своими руками. Самодельный электромагнит. Как сделать мощный электромагнит

Электромагнит является очень полезным устройством, который массово используется в промышленности и во многих сферах человеческой деятельности. Хоть это устройство и может показаться сложным по своей конструкции, однако оно легкое в изготовлении и маленький домашний электромагнит можно сделать в домашних условиях из подручных средств.

Давайте посмотрим процесс создания этой самоделки в видео:

Для того, чтобы сделать маленький электромагнит в домашних условиях нам понадобится:
– Железный гвоздь или болт;
– Медная проволока;
– Наждачная бумага;
– Алкалиновая батарейка.

В самом начале следует отметить, что не советуется брать слишком толстую проволоку. Медная проволока диаметром в один миллиметр отлично подойдет для будущего электромагнита. Что касается размера гвоздя или болта, то идеальным вариантом будет длина в 7-10 сантиметров.

Итак, приступим к изготовлению мини электромагнита. Вначале нам нужно намотать медную проволоку на болт. Важно обратить внимание на то, чтобы каждый виток плотно прилегал к предыдущему.

Намотать проволоку нужно так, чтобы в обеих концах осталось по куску проволоки.

Осталось лишь подключить наши провода к источнику, а именно алкалиновой батарее. После этого наш болт будет притягивать металлические элементы.

Принцип работы электромагнита очень прост. Когда электрический ток проходит через катушку с сердечником образуется магнитное поле, которое и притягивает металлические элементы. Мощность электромагнита зависит от плотности витка и количества слоев медной проволоки, а также от силы тока.

Электромагнит – это магнит, который работает (создаёт магнитное поле) только при протекании через катушку электрического тока. Чтобы сделать мощный электромагнит, нужно взять магнитопровод и обмотать его медной проволокой и просто пропустить ток по этой проволоке. Магнитопровод начнет намагничиваться катушкой и начнет притягивать железные предметы. Хотите мощный магнит – поднимайте напряжение и ток, экспериментируйте. А чтобы не мучится и не собирать магнит самому, можно просто достать катушку с магнитного пускателя (они бывают разные, на 220В/380В). Достаете эту катушку и внутрь вставляем кусок любой железяки (например, обычный толстый гвоздь) и включаем в сеть. Вот это будет по-настоящему не плохой магнит. А если у вас нет возможности достать катушку с магнитного пускателя, то сейчас рассмотрим, как сделать электромагнит самому.

Для сборки электромагнита вам понадобятся проволока, источник постоянного тока и сердечник. Теперь берем наш сердечник и мотаем медную проволоку на него (лучше виток витку, а не в навал – увеличится коэффициент полезного действия). Если хотим сделать мощный электро магнит, то мотаем в несколько слоев, т.е. когда намотали первый слой, переходим во второй слой, а потом мотаем третий слой. При намотке учитывайте, что то, что вы намотаете, эта катушка имеет реактивное сопротивление, и при протекании через эту катушку будет проходить меньший ток при большом реактивном сопротивлении. Но тоже учитывайте, нам нужен и важен ток, потому, что мы будем током намагничивать сердечник, который служит в качестве электро магнита. Но большой ток сильно будет нагревать катушку, по которой протекает ток, так что соотнесите эти три понятия: сопротивление катушки, ток и температура.

При намотке провода выберите оптимальную толщину медной проволоки (где-то 0,5 мм). А можете и поэкспериментировать, учитывая, что чем меньше сечение проволоки, тем больше будет реактивное сопротивление и соответственно ток протекать будет меньший. Но если вы будите мотать толстым проводом (примерно 1мм), было бы не плохо, т.к. чем толще проводник, тем сильнее магнитное поле вокруг проводника и плюс ко всему будет протекать больший ток, т.к. реактивное сопротивление будет меньше. Так же ток будет зависеть и от частоты напряжения (если от переменного тока). Так же стоит сказать пару слов о слоях: чем больше слоев, тем больше магнитное поле катушки и тем сильнее будет намагничивать сердечник, т.к. при наложении слоев магнитные поля складываются.

Читайте также:  Что такое электронный трансформатор для галогенных ламп?

Хорошо, катушку намотали, и сердечник внутрь вставили, теперь можно приступить к подаче напряжения на катушку. Подаем напряжение и начинаем увеличивать его (если у вас блок питания с регулировкой напряжения, то плавно поднимайте напряжение). Следим при этом чтобы наша катушка не грелась. Подбираем напряжение такое, чтобы при работе катушка была слегка теплой или просто теплой – это будет номинальный режим работы, а так же можно будет узнать номинальный ток и напряжение, замерив на катушке и узнать потребляемую мощность электромагнита, перемножив ток и напряжение.

Если вы собираетесь включать от розетки 220 вольт электромагнит, то вначале обязательно измерьте сопротивление катушки. При протекании через катушку тока в 1 Ампер сопротивление катушки должно быть 220 ом. Если 2 Ампера, то 110 Ом. Вот как считаем ТОК=напряжение/сопротивление= 220/110= 2 А.

Все, включили устройство. Попробуйте поднести гвоздик или скрепку – она должна притянуться. Если плохо притягивается или очень плохо держится, то домотайте слоев пять медной проволки: магнитное поле увеличится и сопротивление увеличится, а если сопротивление увеличится, то номинальные данные электро магнита изменятся и нужно будет перенастроить его.

Если хотите увеличить мощность магнита, то возьмите подковообразный сердечник и намотайте провод на две стороны, таким образом получится манит-подкова состоящий из сердечника и 2-ух катушек. Магнитные поля двух катушек сложатся, а значит, магнит в 2 раза будет работать мощнее. Большую роль играет диаметр и состав сердечника. При малом сечении получится слабый электромагнит, хоть если мы и подадим высокое напряжение, а вот если увеличим сечение сердечка, то у нас выйдет не плохой электромагнит. Да если еще сердечник будет из сплава железа и кобальта (этот сплав характеризуется хорошей магнитной проводимостью), то проводимость увеличится и за счет этого сердечник будет лучше намагничиваться полем катушки.

Все в детстве любили играть магнитам: либо притягивая их друг к другу, либо отталкивая, а также примагничивая различные металлические объекты, катая их через препятствия. Но это был магнит, и это было детство. Становясь взрослыми, мы меняем потребности и интересы, но в любой момент может возникнуть необходимость в электромагните, которого просто нет под руками. В данной статье попробуем разобраться в том, как сделать электромагнит из подручных средств.

Что такое электромагнит?

В общем, под магнитом понимается некий объект, который формирует магнитное поле. А электромагнит – это устройство, которое выполняет те же самые функции, что и простой магнит, но за счет уже электрического тока. Другими словами, без электричества подобное устройство работать не будет.

Что понадобится?

Для самостоятельного изготовления подобного устройства понадобятся:

  1. Гвоздь.
  2. Катушка с медной проволокой средних размеров.
  3. Выключатель.
  4. Блок питания.
  5. Паяльник.
  6. Ножницы.

Какой должен быть гвоздь?

Если все компоненты есть в наличии и принято однозначное решение о том, что стоит опробовать на практике, как сделать электромагнит в домашних условиях, то первым делом определяемся с “сердцем” всей конструкции – с гвоздем. Если возник вопрос о выборе именно гвоздя, а не, допустим, болта, то такой выбор связан с его геометрическими формами: он круглый и ровный. Форма стержня будущего электромагнита не должна быть кривой и, тем более, квадратной. Также следует учитывать, что длина гвоздя должна быть достаточной для намотки проволоки, например, 120 мм.

Как сделать катушку?

И вот гвоздь подобран, а это означает, что теперь необходимо намотать на него проволоку. Как сделать электромагнит из обычного гвоздя и медной проволоки? Очень легко. Главное – наматывать проволоку плотно, рядами, прилегающими друг к другу (сделать это необходимо, как минимум, в 4 слоя). Данную операцию следует выполнять достаточно осторожно, чтобы не допустить разрыва, не то такой электромагнит работать не будет.

Как подключить?

Устройство работает от электроэнергии, поэтому получившуюся конструкцию необходимо подключить к На первом этапе мы определились, что наше магнитное устройство будет работать от блока питания, но, с другой стороны, его можно сделать портативным, если использовать батарейку. Итак, давайте рассмотрим последний этап того, как сделать электромагнит. Катушка готова и у неё остались два свободных конца медной проволоки. Их необходимо подключить к источнику электроэнергии, а лучше припаять, чтобы лучше зафиксировать контакт. Также для удобства обращения с ним можно установить выключатель, который позволит его включать только по мере необходимости.

Как работает?

Принцип действия созданного устройства очень прост. На катушку, состоящую из стержня и медной проволоки, подается энергия, в результате чего катушка намагничивается. Все очень просто! И вы теперь знаете, как сделать электромагнит самостоятельно. Такие знания непременно пригодятся!

Как сделать мощный электромагнит?

Если требуется сделать устройство намного мощнее, чем получилось, то для этого необходимо увеличить катушку. Это достигается за счет увеличения количества витков и количества слоев.

Читайте также:  Укладка линолеума цена

На сегодняшний день, электромагниты используются в огромном количестве устройств и приборов. Электробритвы, магнитофон, дверной звонок – и это малая часть тех приборов, где он установлен.

Устройство электромагнита достаточно простое, и в этой статье я постараюсь объяснить его принцип работы и покажу вам как сделать самодельный электромагнит.

Электромагнит это такое устройство, которое создает магнитное поле при прохождении через него тока. Если взять обычный провод и присоединить один его конец к плюсу батарейки, а второй конец к минусу, то вокруг провода образуется магнитное поле. Правда оно будет очень слабым, для того чтобы его усилить, провод необходимо согнуть спиралью. В этом случае, витки провода находятся близко друг к другу и магнитное поле становится сильнее.

Чем больше количество витков и чем больше сила тока – тем сильнее будет притягивать электромагнит. Еще больше усилить магнитное поле можно намотав провод на железный стержень.

Самодельный электромагнит можно сделать из обычного гвоздя, провода и батарейки. Для большего удобства добавьте в список изоленту.




Для намотки я использовал медный одножильный провод, диаметром около миллиметра. Отложите от края пару сантиметров и начните наматывать провод на гвоздь.

При необходимости поправляйте намотку, чтобы каждый виток плотно прилегал к предыдущему, так сила электромагнита будет больше.


Закончив намотку, отложите еще сантиметров 7-10 и обрежьте провод. Затем примотайте батарейку с помощью изоленты. Верхний конец провода провода изогните таким образом, чтобы он постоянно касался полюса батарейки.

Теперь, взяв электромагнит в руку и замыкая нижний конец провода на плюс батарейки, вы увидите что металлические предметы будут притягиваться к гвоздю. Самодельный электромагнит работает!

Конструкция и настройка краскопульта. Часть 1/2 конструкция и комплектация.

В борьбе за безупречный внешний вид автомобиля главным «личным оружием» маляра является покрасочный пистолет — по-научному краскопульт. В отличие от «рыцарей плаща и кинжала», маляры применяют свои пистолеты в сугубо мирных целях (и слава Богу!), хотя привязаны они к ним не меньше, чем агент 007 к своей «беретте». О настройке краскопульта, его подготовке к «покрасочному бою», мы и расскажем на этот раз.

О настройках пистолета я рассказал в этом видео:

Но возможно кто то хочет почитать на тему настройки краскопультов и узнать более подробную информацию я написал следующую статью:

Сегодня вы узнаете

1 Когда я слышу слово «покраска», я хватаюсь за пистолет…
1.1 Устройство и особенности конструкции окрасочных пистолетов

1.2 Функции и расположение регуляторов

2 Система окрасочного пистолета
3 Настройка входного давления
3.1 Настройка входного давления с помощью манометра-регулятора
3.2 Если пистолет оборудован встроенным манометром

3.3 Если манометр без регулятора

3.4 Если манометра нет вообще. Наименее точный способ

4 Если рекомендованное входное давление неизвестно. Настройка пистолетов «no name»
5 Размер факела при окраске
6 Подача краски
7 Диаметр сопла
8 Тестируем краскопульт
8.1 Тест правильности формы отпечатка факела

8.2 Тест на равномерность распределения краски в факеле

8.3 Тест на качество распыления

9 Резюме
10 Полезные материалы
10.1 Настройка краскопульта (на примере краскопультов Walcom)

10.2 Тестовые напылы

10.3 Формы отпечатков факела (в зависимости от типа воздушной
головки) и их эффективность в том или ином случае

КОГДА Я СЛЫШУ СЛОВО «ПОКРАСКА», Я ХВАТАЮСЬ ЗА ПИСТОЛЕТ…

Все пистолеты, применяющиеся в ремонтной окраске автомобилей, работают по принципу пневматического распыления. Это означает, что лакокрасочный материал, подающийся в краскораспылитель и выходящий из его сопла, разбивается на мелкие частицы потоком сжатого воздуха, «выстреливающего» с большой скоростью из отверстий воздушной головки. При этом скорость воздушного потока иногда достигает сверзвуковых скоростей. В результате образуется так называемый окрасочный факел, состоящий из частичек материала, движущихся по направлению к окрашиваемой поверхности. Долетев до поверхности, частички оседают на ней, формируя покрытие.

УСТРОЙСТВО И ОСОБЕННОСТИ КОНСТРУКЦИИ ОКРАСОЧНЫХ ПИСТОЛЕТОВ

Конструкция окрасочных пистолетов включает в себя: корпус с каналами для подачи сжатого воздуха и краски, снабженными игольчатыми клапанами, спусковой рычаг, управляющий переключением клапанов, выходное сопло для смесеобразования и формирования факела требуемой формы, резервуар (бачок) для краски, регулировочные винты для изменения расхода воздуха, краски и корректировки пятна распыла. Механизм спускового рычага устроен так, что при его нажатии сначала открывается подача сжатого воздуха. Дальнейшее нажатие приводит к срабатыванию клапана подачи краски.

ФУНКЦИИ И РАСПОЛОЖЕНИЕ РЕГУЛЯТОРОВ

Как уже было сказано, на корпусе любого современного краскопульта имеется несколько регулировочных винтов. Первый, самый верхний (на некоторых краскопультах, как например у SATA, может располагаться сбоку), отвечает за корректировку размера и формы окрасочного факела. Второй ответственен за регулировку хода иглы и количество подаваемого материала. На многих краскопультах присутствует еще и третий винт, с помощью которого регулируется подача воздуха на входе. Как правило, он располагается внизу на рукоятке пистолета. У SATA этот винт находится «сзади» — под винтом регулировки подачи материала. Регуляторы на корпусе краскопульта SATA. Вопрос регулировки краскопульта сводится к выбору правильного соотношения «воздух — материал». При правильном балансе эти параметры позволяют добиться максимальной равномерности окрасочного факела по всей ширине, и такого же равномерно распределения лакокрасочного материала по поверхности.

Читайте также:  Установка радиаторов: назначение и устройство, разновидности и материалы, обвязка и монтаж

СИСТЕМА ОКРАСОЧНОГО ПИСТОЛЕТА

В зависимости от величины давления сжатого воздуха на входе в краскопульт и на воздушной головке (на выходе), все окрасочные пистолеты можно разделить на три основные группы которые регламентируются документами или законодательством: конвенциональные HD (высокое давление);

HVLP (High Volume Low Pressure — большой объем воздуха и низкое давление);

EPA она же LVLP (Low Volume Low Pressure — низкий объем воздуха и низкое давление) RP, РЕУ и другие.

Различные типы окрасочных пистолетов внешне выглядят практически одинаково. “Изюминка” скрыта внутри конструкции На сегодняшний день наиболее прогрессивными, экономичными и удовлетворяющими экологическим требованиям являются последние два типа распылителей. Как видно из названия, они характеризуются низким рабочим давлением: если обычные конвенциональные пистолеты распыляют материал при высоком давлении (примерно 3-4 бар), то пистолеты систем HVLP и EPA — при низком (примерно 0,7 HVLP и 1,2 — 1,8 EPA). Законодательство регламентирует у краскопультов HVLP давление в воздушной голове 0,7 бар, у системы EPA перенос не менее 65%, остальные параметры не регламентируются и каждый производитель волен сам выбирать что применить в своём пистолете. Что это дает? Главное преимущество — высокий коэффициент переноса краски. При малом давлении меньше краски превращается в бесполезный туман вокруг детали (так называемый overspray, «перепыл»), и больше переносится непосредственно на деталь. У краскопультов HVLP или EPA коэффициент переноса достигает 65-70% (по сравнению с 30-45% у конвенциональных распылителей). Учитывая, что краски типа металлик и перламутр являются недешевыми, можно легко подсчитать, сколько денег сбережет для вас подобный краскопульт.
На сегодняшний день бытует ошибочное мнение или миф о том что пистолеты низкого давления отлично подходят для гаражей, на самом деле это очень серьёзное заблуждение (низкое давление не означает низкое потребление воздуха!), классические пистолеты системы HVLP потребляют от 430 до 460 л/мин. Такое количество воздуха не может выработать компрессор с питанием 220V, а ведь именно такие стоят в большинстве небольших мастерских или гаражей. Вторая проблема этой системы — огромное количество воздуха которую пистолет вдувает в помещение и если там не хорошей вентиляции, такой пистолет начинает гонять пыль по всему объёму помещения. Пистолеты EPA (RP, LVLP, HTE) — потребляют от 265 до 350 л/мин воздуха, что значительно меньше чем у HVLP и именно такие пистолеты я рекомендую для небольших мастерских или гаражей. На сегодня появилось новое направление на мой взгляд если говорить о системах — это гибридная система, когда давление в голове 1,2-1,3 бара. Обычно производитель относит такой пистолет к системе HVLP, но говорить о полноценном HVLP не возможно, слишком высокое давление, но и для стандартного (RP, LVLP, HTE 1,7 — 1,8) — слишком низкое.

Наиболее точно измерить давление на выходе можно с помощью специальной тестовой воздушной головки с двумя манометрами. Для настройки и контроля давления пистолета заводы выпускают тестовые головки с двумя манометрами.

К сожалению, такие насадки в комплекте с пистолетом не идут, поэтому указанная величина контролируется косвенно, по параметру давления на входе в краскопульт. С регулировки этого параметра мы и будем начинать настройку краскопульта.

На сегодняшний день существует мнение что пистолеты HVLP — строго для базовых красок, а EPA (RP, LVLP, HTE) для акрилов и лаков, но на самом деле это не совсем так, производитель рекомендует ту или иную комплектацию, основываясь опять таки на тестах и опыте своих техников или маляров которым давали оборудование на тесты. Мало того, для идеальных условий. На самом деле такие условия не всегда идеальны и мастера используют разные материалы как по качеству так и по строению или химии. Поэтому всё больше производителей обращают внимание мастеров на то что оборудование нужно подбирать согласно условий: влажности, температуры и других параметров. Например Devilbiss опубликовал вот такую таблицу в которой приведена зависимость выбора воздушных голов и дюз к окружающим условиям:

Их таблицы видно что при более низкой влажности производитель рекомендует использовать голову ТЕ10, с большей дюзой, а значит с более крупной каплей чем при более высокой влажности, когда дюзу нужно брать меньше чтобы капля соответственно получалась мельче.

На второй таблице указано зависимость выбора головы от влажности и дюзы от температуры:

Таким образом хочу многих мастеров успокоить по поводу выбора комплектации оборудования — не существует в мире чего то одного идеального, всегда нужно подбирать что то под свои нужды и условия, если то что вы получили из оборудования “жрёт краску” значит нужно уменьшить дюзу, потери при этом увеличатся, но за счёт меньшей подачи, а значит более тонкого слоя вы получите сокращение количества материала используемого для окраски одной детали, конечно всегда и всему есть предел. Если у вас пистолет “пятнит” — возможно для него слишком высокая или наоборот, низкая влажность и возможно, вам нужно поменять голову или дюзу и все встанет на свои места (конечно если это позволяет конструкция вашего пистолета).

Читайте также:  Что такое затирка для плитки. Ключевые правила подбора и использования затирки для плитки

Кроме всего прочего пистолеты отличаются друг от друга не только системой но и вязкостью применяемых материалов.

Среди маляров бытует мнение что существуют краскопульты для грунта, базы и лака. На самом деле это не совсем верно, пистолеты делятся по вязкости с которыми работают эти пистолеты. так же к вязкости материала привязаны и дюзы, но выбор дюз так же даёт нам инструмент по нанесению определённой толщины покрытия, чем больше дюза тем толще слой вы можете нанести за счёт того что в факел подаётся большее количество материала.

Существует в основном 3 типа вязкости с которыми работают краскопульты:
1. Вязкость от 14 до 20 сек. Обычно это финишные материалы, лаки, краски, а так же грунты, антикоррозионные или изоляционные в версии например “мокрый по мокрому”. Так же в индустрии дерева к этой вязкости относятся морилки. Обычно слой нанесения таких материалов колеблется от 5 мк. до 10 мк за один слой. Дюзы которые подбирают для таких работ и материалов это от 1,2 мм до 1,5 мм максимум.
2. Вязкость от 20 до 35 сек. Обычно это первичные грунты, грунты наполнители, но иногда под такой вязкостью выступают и финишные материалы, краски и лаки. Толщина слоя от 35 мк до 70 мк. Дюзы которые обычно предлагает производитель от 1,6 до 1,6 мм
3. Вязкость от 35 сек и выше. Особо вязкие материалы, жидкие шпаклёвки и высоконаполнительные грунты с толщиной слоя от 70 мк до 250 мк. за один слой, дюзы для этих материалов от 2,0 до 2,8 мм и выше, которые применяются в пистолетах для густых масс.

Каждый производитель лакокрасочных материалов четко указывает, какая дюза для какого материала и какого вида выполняемых работ должна использоваться. Как правило, эти рекомендации соответствуют таким значениям (или недалеки от них): базовые эмали — 1,3-1,4 мм (для светлых цветов лучше 1,3); акриловые эмали и прозрачные лаки — 1,4-1,5 мм (вязкость акриловых эмалей и лаков обычно выше чем базовой краски); жидкие первичные грунты — 1,3-1,5 мм; грунты-наполнители — 1,7-1,8 мм; жидкие шпатлевки — 2-3 мм; антигравийные покрытия — 6 мм (специальный распылитель антиграв. материалов). Нетрудно догадаться, что диаметр сопла весьма существенно влияет на количество пропускаемой краски, ее расход. Например, залить лаком большой капот с дюзой 1,3 мм будет довольно-таки проблематично (по словам некоторых маляров — застрелиться можно). Даже если подачу краски открыть на полную, пропускной способности с такой дюзой для материала такой вязкости явно будет маловато. Через дюзу 1,5 мм, при прочих равных, лакокрасочного материала проистекает уже на треть больше, чем через дюзу 1,3 мм. Разбег в значениях диаметров дюз обусловлен также и привычками маляров: кто-то любит наносить «тонко», а кто-то привык «заливать». С другой стороны современные материалы с низким VOC или по простому с высоким сухим остатком не требуют таких слоёв как старые материалы MS или даже HS, мало того они очень хорошо и легко смачивают поверхность, в итоге нет смысла наливать толстые слоя, и все чаще у мастеров можно уже увидеть дюзы 1,2 и 1,3 для базы и лака соответственно. Так же играет роль и производительность пистолета, например SAGOLA 4600 с дюзой 1,25 мм имеет такую же производительность как SATA 5500 с дюзой 1,4, при одинаковых условиях.Таким образом при выборе дюзы важно понимать для какой вязкости материала вы хотите купить оборудование и какое оборудование вы будете применять.
Но не всё так просто, казалось бы что бери побольше дюзу и будет тебе счастье, но не всё так просто, обычные головы пистолетов в сочетании с дюзами для материалов с вязкостью 14-20 сек, имеют определённое строение рассчитанное на то чтобы “вытянуть” материал с этой низкой вязкостью и его атомизировать, учитывая такую низкую вязкость сам факел устроен так чтобы именно оградить и направить материал на поверхность, чтобы он не разлетался в разные стороны, когда у вас вязкость выше, то такой материал уже намного сложнее “вытянуть” из бачка и разбить, потому, головы у таких пистолетов устроены иначе, они имеют большую вытягивающую силу и сруи воздуха из головы направлены не вдоль факела, а внутрь, чтобы разбить этот густой материал. Существуют конечно и универсальные конструкции как например Devilbiss FLG5, IWATA W400 Bellaria, но понятно что универсальное никогда не будет работать наравне со специальным оборудованием.
Несколько видео в конце для тех кто любит смотреть, а не слушать.

Читайте также:  Старый дом из бруса. Что делать с полами?



Гайд по выбору электрического краскопульта для бытовых работ

Настала пора заняться дачными заботами, и я подошел к выбору краскопульта. Вообще, есть механические распылители краски, пневматические и электрические. Первые я отмел в связи с тем, что они имеют минимум удобства при работе и имеют множество нареканий к навыкам и опыту окраски. Пневматические также отмел по одной простой причине, у меня нет дополнительного конвектора, да и работы очень далеки от промышленных.
Так что, для бытовых работ более чем подходят электрические краскопульты.

Для начала определимся, какой тип электрических краскопультов представлен на рынке инструментов

Электрические краскопульты могут быть нескольких видов:

  1. Безвоздушные электрические краскопульты
  2. Воздушные электрические краскопульты
  3. Сетевые электрические краскопульты
  4. Аккумуляторные электрические краскопульты

Безвоздушные электрические краскопульты.

Самые распространенные в бытовом применении краскопульты. Они характеризуются подачей краски прямо в сопло при помощи поршневого насоса. Насос, может с различной производительностью набирать нужное давление краски и нанесение зависит от конструкции дюзы краскопульта. Преимуществом данного типа краскопультов является доступность и мобильность. Он может быть использован в бытовых целях, но обладает определенными минусами. данный тип электрокраскопультов отличается повышенным расходом краски, плюс могут образовываться подтёки краски, что влияет на финальный результат работ. Они отлично подходят для нанесения грунтовок, и красок в местах, где не требуется особого качества покраски.

Особенным отличием (не обязательно, но зачастую) такого типа бытовых краскопультов является наличие некоего «горба», где расположен сам насос.

Вот пример подобных бытовых краскопультов

Еще возможны варианты, где насос расположен немного позади и они имеют вот такой вид

Воздушные электрические краскопульты

Данный тип распылителей краски отличается методом нанесения. Он характеризуется тем, что краска распыляется на окрашиваемую поверхность благодаря распылению на мелкодисперсную пыль приходящим потоком воздуха. Единственное различие — это откуда берется этот воздух. Бывают два подвида электродвигателей для данных краскопультов: соленоидные или турбинные электродвигатели. В зависимости от выбранного типа действия, они могут быть вмонтированы в корпус самого краскопульта, а также находится в сторонке и подавать воздух по шлангу или трубе. Если у краскопульта отдельно-стоящий двигатель, то он или имеет колеса, чтобы таскать его за собой, или может вешаться на плечо и носится как сумка. Основным популярным типом для бытового использования являются именно модели с выносным электродвигателем. Это удобно, так как работать придется, удерживая в руках только пистолет с емкостью с краской. Плюсами данного типа краскопультов является низкий расход краски и высокое качество покраски. Но также имеются минусы. Во-первых в месте покраски образуется облако мелкой дисперсной краски. Повышенный шум работы (сравнимо с пылесосом).

Вот как выглядят воздушные электрокраскопульты

Сетевые электрические краскопульты

Это подавляющее число краскопультов на рынке. Плюсами является любая мощность, подбираемая под задачи, а также практически неограниченный срок работы, который ограничен лишь характеристиками электродвигателя.

Минус — это разумеется, зависимость от розетки. Ну и некоторое стеснение мобильности при работе.

В общем-то, все показанные выше картинки — сетевые краскопульты

Аккумуляторные электрические краскопульты

Данный тип распылителей краски пришел относительно недавно, и стал очень распространен в связи с его мобильностью. Больше нет зависимости от розетки и работать, не мешая себе проводом, намного удобнее. Из минусов отмечу ограниченный выбор по мощности, более высокий вес краскопульта из-за аккумулятора и ограниченное время работы из-за необходимости замены/зарядки АКБ.

Аккумуляторные краскопульты выглядят примерно так

Также краскопульты различаются по уровню рабочего давления

Краскопульты по давлению делятся на 3 типа:

  • Низкого давления (до 3-х атмосфер).
  • Среднего давления (от 2,5 до 10 атмосфер).
  • Высокого давления (от 10 до 55 атмосфер).

Также есть классификация по системе распыления краски:

  • НР – электрические краскопульты большого давления, с однородным факелом и большой скоростью движения краски.
  • МР – распылители среднего давления.
  • LVМР – устройства, способные окрашивать поверхность с малым объемом краски и средним давлением.
  • НVLР – в таких распылителях факел создается низким давлением воздуха, со средней скоростью движения краски, что позволяет добиться 70% объема краски, распределенной равномерным слоем.
  • LVLР – такие электрические краскопульты способны окрашивать поверхность на малом давлении с небольшой подачей краски. В результате образуется однородный факел, чем достигается хорошее качество покрытия.
  • НТЕ – краскопульты, обеспечивающие наибольшую подачу краски.
  • RР – краскопульты низкого давления.

Данные параметры не всегда можно встретить в характеристиках товара, поэтому после того, как мы определились, какой тип электрораспылителя краски нам подходит, смотрим на несколько следующих важных моментов

  • Стоит уточнить, с какой вязкостью красок может работать краскопульт

20-30 DIN — подходит для обычных бытовых красок, глазурей, эмалей и масляных составов

40-60 DIN — для работы с густыми латексными составами и грунтовками

Читайте также:  Цвет обоев для спальни

80-100 DIN — для работы с особо-вязкими составами. Например, составы с огнезащитой.

  • Обязательно указывают производительность. Тут уж стоит подбирать краскопульт именно по вашим задачам.

Производительность можно выбрать самому.

  • Диаметр сопла напрямую связан с используемыми красками

0,8-1,2 мм – морилки, грунтовки, краски на водной основе

1,3-1,6 мм — большинство эмалей и лаков

1,6-3 мм — клеи, смолы, жидкие шпатлевки

3-6 мм — густые строительные смеси

  • Стоит рассмотреть используемую емкость для краски

Емкость до 500 мл — используются для местных работ, покраска мебели или небольших объектов

Для покраски стен и заборов — от 600 мл

В итоге

Для редкого домашнего использования стоит посмотреть на безвоздушные краскопульты с производительностью 300-500 г/мин

Для частого домашнего использования стоит выбрать модель воздушного краскопульта с производительностью 600-800 г/мин и с вязкостью 35-60 DIN

Для профессионального использования стоит смотреть на модели с повышенным объемом бака (от 1л) и производительностью от 800 г/мин.

Как выбрать электрический краскораспылитель?

Электрический краскопульт — это аппарат для окрашивания поверхности путем распыления красящего вещества. Краска из устройства выделяется под давлением встроенного насоса.

На рынке представлено множество разных модификаций электрокраскопультов, отличающихся друг от друга не только техническими параметрами, но и стоимостью. В данной статье проведем обзор основных технических нюансов электрических аппаратов, знание которых поможет выбрать наиболее подходящий вариант краскопульта.

Достоинства электрических устройств

Электрические модели отличаются целым рядом преимуществ:

  1. Мобильностью. Краскопульт можно перемещать по строительной площадке, и при этом нет нужды в тяжеловесном компрессоре или воздушном насосе — достаточно иметь доступ к электроэнергии.
  2. Простотой применения и конструкции. Аппараты, предназначенные для бытового использования, отличаются простой конструкцией, разобраться в которой сможет даже не специалист.
  3. Незначительным весом и малогабаритностью. Хотя краскопульты отличаются небольшими габаритами, в бак помещается до литра лакокрасочного состава. Вместе с баком общий вес краскораспылителя может составлять от 1,5 до 2,2 килограмма. За счет низкого веса достигается комфортность в работе, так как руки не будут слишком уставать.
  4. Экономностью расхода краски. На поверхность подается умеренно тонкий слой материала, что выгодно отличает краскопульты от валиков и кисточек.
  5. Невысокой стоимостью устройства. В сравнении с пневматическими моделями электрические стоят гораздо меньше.

Обратите внимание! Электрические модификации не подходят для окрашивания автомобилей жидкой резиной.

Принцип работы

Электрический краскопульт функционирует за счет преобразования электричества в пневматическую энергию. Краска под действием повышенного давления направляется из бачка к распылителю, который распределяет ее по поверхности.

Конструкция работы электрического краскопульта

Емкость для лакокрасочного состава располагается либо над устройством (слив), либо под ним (подсос). В результате нажатия на рычаг аэрограф пропускает через себя сжатый воздух. Если нажать сильнее, то произойдет сдвиг иглы, и поток краски сократится. Иными словами, чем выше давление воздуха, тем менее интенсивно лакокрасочный материал покидает распылитель.

Для различных консистенций краски существуют отдельные виды краскораспылителей. К примеру, для густых красок используются аппараты с более значительным выходным отверстием, чем для жидких. Объем поступления краски контролируется при помощи так называемого факела распыла. Показатель рабочего давления также зависит от вида лакокрасочного материала. Регулирование подачи воздуха осуществляется благодаря специальному винту.

Любой краскопульт оснащен так называемым пистолетом. Это устройство при помощи дюзы образует факел в результате смешивания следующих компонентов:

  1. Воздуха под высоким давлением, который подается из компрессора.
  2. Рабочего состава (лака, грунтовки или краски), соответствующего допустимым параметрам вязкости.

Во внутренней части пистолета воздух разделяется на два потока, один из которых направляется по центру, а второй – по периферии. Все электропульверизаторы оснащаются тремя контроллерами, которые позволяют задать необходимый режим работы:

Конструктивные элементы электрического краскопульта со шлангом

  1. Регулировка общей подачи воздуха дает возможность поддерживать баланс между объемом подачи краски и ее формой наложения при определенном скоростном режиме. Если предполагаемый расход краски невелик, краник прикрывается. После этого интенсивность подачи снизится, и краска будет распыляться более аккуратно.
  2. Давление на боковые жиклера на периферии контролируется отдельным винтом. Воздушный поток определяет форму струи лакокрасочного материала: чем сильнее подача воздуха, тем обширнее периметр. Если прекратить давление на боковые жиклера, форма подачи станет округлой. Однако это крайний вариант, поскольку в этом случае сильно возрастет укрывистость покраски, что приведет к потекам.
  3. Расход лакокрасочного материала определяется объемом воздуха, подаваемого по центру электропульверизатора. Чтобы сделать подачу менее обильной, следует немного прикрыть краник.

Краники могут находиться в разных местах, в зависимости от модификации устройства, однако наиболее распространены две схемы:

  1. Регулировочный краник подачи краски располагается на боковой части пистолета. Несколько ниже находится краник общей подачи воздуха.
  2. Краник общей подачи воздуха располагается на конце ручки, возле входного патрубка. Краник, регулирующий ширину струи, находится там же, где и в первом случае, — на боковине пистолета.
Читайте также:  Чем можно отмыть шпаклевку с разных поверхностей? Практические рекомендации, как это сделать

Емкости под краску могут быть не только разного размера, но и часто устанавливаются в различных местах. Обычно они занимают свое место в области передней части ствола, что позволяет улучшить параметр всасывания. Применяется два способа подачи лакокрасочного материала:

  1. Самотеком. В этом случае состав устремляется вниз под давлением своей массы. Контролировать расход в данном случае затруднительно, так как он целиком зависит от диаметра выхода из емкости.
  2. Более распространено использование эффекта разряжения. При этом эффекте стремительно двигающаяся воздушная струя образует отрицательное давление под резервуаром с краской, в результате чего состав подсасывается.

Обратите внимание! Основное отличие электрического краскопульта от пневматического — присутствие встроенного компрессора. Достоинство такого устройства в невозможности перегрузки компрессора.

Электростатическая покраска

Отдельно стоит сказать об электростатическом методе окрашивания поверхности. В процессе работы лакокрасочный состав при соприкосновении с электродом, установленным в распылителе, получает отрицательный разряд (до 100 кВт). После распыления краски ее частички по силовому полю устремляются исключительно к окрашиваемой конструкции. Преимущества технологии очевидны: сокращение расхода краски и более аккуратное ее распыление.

Советы по выбору краскопульта

Перед тем как выбрать электрический краскопульт в магазине, рекомендуется определиться со следующими параметрами:

  1. Шириной факела. Один из факторов при выборе пульверизатора — размер площади, подлежащей окрашиванию. Если струя тонкая, на работу уйдет много времени. Если же факел широкий, расход лакокрасочного состава может быть слишком большим.
  2. Размером сопла. Для покрытий типа «металлик» рекомендуется размер в 1,2-1,3 миллиметра, для акриловых составов и лака — 1,4-1,5 миллиметра, для грунтов — 1,5-1,7 миллиметра, для шпатлевок — 1,7 миллиметра или больше. В продаже имеются сменные комплекты дюз с самыми разнообразными размерами.
  3. Крышкой сопла. Рекомендуется выбирать крышки из нержавеющей стали.
  4. Материалом бачка. Бачок из металла легче отмыть после окончания работы, однако подобные резервуары непрозрачны, а потому контроль над расходом материала усложнен. Пластиковый бачок характеризуется противоположными качествами.
  5. Материалом, из которого изготовлен корпус. Лучший вариант — качественный пластик. Он легок и прочен.
  6. Местом установки бачка. Предпочтительнее верхнее расположение емкости, так как это упростит работу с вязкими составами.
  7. Возможностью регулирования процесса. Большая часть устройств имеет минимально необходимое количество регулировок. Прежде всего, речь идет о контроле расхода краски. Однако современные аппараты оснащаются регулировками рабочего давления, электронным контролем расхода лакокрасочного состава, разными вариантами распыления и т.д.
  8. Способностью к автономному функционированию. Отдельные модификации могут работать без аккумулятора, благодаря чему возможна работа даже там, где нет доступа к электрической сети.

Использование и уход

Прежде всего, нужно разобраться с типом краски, который будет заправляться краскопульт. Просто залить состав из банки нельзя, так как устройство просто не справится с его распылением. Нужна краска определенной вязкости, получить которую можно только разбавлением. Для облегчения этой задачи почти все модификации оснащаются специальной чащей, благодаря которой можно установить густоту состава, исходя из скорости его вытекания.

Следующий важный нюанс — выбор дюзы. Обычно пульверизаторы комплектуются несколькими видами насадок. От выбранной дюзы непосредственно зависит качество распыления. Чем более вязкий состав, тем большего размера требуется дюза. Для алкидных смесей и нитроэмалей понадобится дюза с отверстием 0,6 миллиметра, а вот для алкидных дисперсий нужна дюза с отверстием 0,8 миллиметра.

При нанесении краски следует обращать внимания на следующие обстоятельства:

  1. Нормальное расстояние от сопла пульверизатора до поверхности — 10-15 сантиметров. Слишком близкое расположение сопла спровоцирует потеки, а слишком отдаленное — станет причиной улетучивания краски.
  2. Характер движений должен быть равномерным, без рывков. Также на равномерность окрашивания оказывает влияние скорость обработки поверхности. Нанесение краски осуществляется со стороны в сторону и вниз. Если двигаться вверх, неизбежны потеки.
  3. Струя при окрашивании должна направляться исключительно перпендикулярно обрабатываемой поверхности.

По окончании работ краскораспылитель необходимо в обязательном порядке очистить от остатков лакокрасочного состава. Чтобы очистить устройство, нужно демонтировать бачок для краски и слить из него остатки красящего вещества. Далее следует залить в емкость растворитель.

На протяжении пары минут жидкость в бачке взбалтывается, после чего она сливается в отходы. Далее нужно снова залить в емкость растворитель и распылить его посредством краскопульта. Это необходимо для прочистки внутренних каналов устройства. Особенно тщательно нужно очищать сопло — его рекомендуется протереть губкой, промоченной в растворителе.

Электропульверизатор — отличное решение для бытовых целей, однако для профессионального окрашивания поверхности он не подходит. Пневматические устройства отличаются более качественным распылением лакокрасочных материалов, что непосредственно отражается на результате работы.

Также стоит отметить, что электрические распылители отличаются небольшой мощностью и предназначены, прежде всего, для работы с водоэмульсионными красками. Поэтому перед покупкой электрического краскопульта следует определиться с задачами, для которых он будет применяться.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: