Теплоемкость керамзитобетонных блоков

Керамзитоблок – размеры, плотность, предназначение, эксплуатационные характеристики

Любой индивидуальный застройщик желает получить в конечном счёте комфортный, теплый, «тихий», надежный и долговечный дом, и по возможности — с минимальными затратами. Поэтому-то и начинаются поиски основного материала для «поднятия стен», такого, чтобы сочетал бы в себе достаточный уровень прочности и устойчивости к негативному воздействию разнообразных природных факторов, низкую теплопроводность. И одновременно был бы удобным в проведении кладки, не сильно тяжелым, и не особо дорогим.


Керамзитоблок – размеры, плотность, предназначение, эксплуатационные характеристики

К числу современных материалов, в основном подходящих под указанные критерии, полнее можно отнести блоки из керамзитобетона. Это «семейство» представлено довольно большим разнообразием изделий, различающихся формой, размерами, плотностью, наличием пустот, другими характеристиками. И в этом многообразии порой можно «заблудиться».

Давайте попробуем «разложить все по полочкам». То есть рассмотрим основные параметры, которыми характеризуется керамзитоблок размеры, плотность, предназначение, эксплуатационные характеристики – и вплоть до уровня цен.

Основные характеристики

Таблица сравнения теплопроводности строительных материалов
Отличные тепло- и звукоизоляционные свойства материала (приведены в таблице выше) обусловлены его пористой структурой и плотностью. Это делает блоки достаточно легкими. При изготовлении керамзитобетона используется специальная технология отжига, подобная той, которая применяется при производстве кирпичей.

В основа блоков – раствор из цемента, воды, песчаного наполнителя и керамзитовых гранул. При этом основную роль играет именно концентрация и размеры последних в составе.

Что касается самой теплопроводности, то ее коэффициентом называется количество тепла, проходящего за час через определенный строительный элемент (тело). При этом данные указываются для тела с площадью основания в 1 м2 и толщиной в 1 м.

При производстве самих блоков может варьироваться количество гранул в составе, создавая при этом элементы с нужными показателями. С их учетом керамзитобетонные блоки разделяют на:

  • Конструкционные. Используются для сооружения несущих элементов здания.
  • Теплоизолирующие. Имеют низкие показатели прочности, но зато обеспечивают высокую изоляцию.
  • Конструкционно-теплоизолирующие. Имеют средние характеристики прочности и теплосбережения. В основном применяются для изготовления сборных панелей.

С увеличением размеров гранул керамзита в бетоне снижается способность материала пропускать тепло, что разрешает сооружать конструкции с узкими стенами в местах, где их уровень прочности будет достаточный, чтобы выдерживать возлагаемые нагрузки.

Такие характеристики материала – находка для строительства. При небольшой ширине стен и, соответственно, массе не требуется создания высокопрочного основания, что сокращает затраты на строительство.

Разновидности керамзитобетона

В состав строительного материала входит цемент, песок и керамзит (гранулы легкого пористого вещества 3-20 мм, получаемого путем нагревания глины или сланца). При строительстве жилых зданий в расчетах толщины стен и других показателей используются строительные нормы СНиП 23-02-2003 «Тепловая защита зданий». Рассмотрим основные виды строительных блоков и их применение:

  • Теплоизоляционные блоки (материал имеет в своем составе повышенное количество керамзита, что делает его легким, керамзитобетон этого вида имеет низкую теплопроводность, около 0,18-0,25 Вт/м*°С, при плотности 300-700кг/м3).


Материал с хорошей теплоизоляцией эффективно применять при строительстве сооружений, требующих сохранения стабильной температуры как можно дольше. Это может быть баня, ферма для выращивания грибов, свинарник, складские помещения, где необходимо наоборот сохранять пониженную температуру. Для утепления уже существующих стен и для перегородок, не служащих несущими конструкциями в жилых домах, также используются теплоизоляционные материалы.

  • Конструкционно-теплоизоляционные блоки отличаются прочностью, но имеют больший коэффициент теплопроводности керамзитобетона. Незаменимы при необходимости снижения веса строительной конструкции во избежание сильной осадки грунта. Этот вид блоков наиболее популярен в загородном строительстве, как для возведения несущих стен, так и для внутренних перегородок.
  • Конструкционные блоки наиболее прочные и тяжелые (плотность 1800 кг/м3). Обычно их применяют для фундаментов и несущих стен, при строительстве промышленных зданий, где большое значение имеет прочность конструкции. При возведении зданий из прочного керамзитобетона необходимо учитывать большой вес данных блоков.

По конструктивным особенностям блоки подразделяются на:

  • Пустотелые могут иметь 2, 4, 7, 8 и более пустот внутри (глухих либо сквозных), что значительно снижает вес, уменьшает коэффициент теплопроводности керамзитобетонных блоков и снижает себестоимость материала.
  • Полнотелые не имеют пустот, являются более прочным, но и дорогостоящим материалом.

Блоки для стен имеют толщину 13,8; 19; 28,8 см и вес 17-26 кг, перегородочные изделия более тонкие – 9 см и весят 7-15 кг.

Некоторые особенности материала и его коэффициент теплопроводности

Керамзитобетонный блок
Блоки из керамзитобетона – материала с продолжительным сроком службы, способны сохранять высокие характеристики прочности и теплоемкости на протяжении более 50 лет.

Размеры готовых элементов значительно ускоряют строительный процесс и при этом их кладку вполне можно выполнять собственноручно (без наличия специальной техники).

Размерные показатели определяются назначением блоков. Характеристики прочности зависят исключительно от цемента (М100-500).

Показатели плотности, кг/м3 Теплопроводность, Вт/(м·°С)
В условиях использования Изначальные данные
500 0,17–0,23 0,14
600 0,20–0,26 0,16
800 0,24–0,31 0,21
1000 0,33–0,41 0,27
1200 0,44–0,52 0,36
1400 0,56–0,65 0,47
1600 0,67–0,79 0,58
1800 0,80–0,92 0,66

Сравнение теплопроводности в таблице

Если рассматривать разрез керамзитобетонного блока, то он внутри имеет множество ячеек с воздухом. Это обусловливает его высокие показатели теплосбережения. Стоит отметить и способность керамзита влиять на уровень влажности в помещении. Он ее вбирает при слишком большой концентрации и отдает в случаях, когда воздух излишне сухой. Именно по этой причине в доме из такого материала всегда будет оптимальная влажность воздуха.

Читайте также:  Установка систем пожаротушения и сигнализации. Автоматическая система пожаротушения — виды, применения систем

Классификация

В зависимости от целевого назначения выделяют три вида керамзитобетона: теплоизоляционный, теплоизоляционно-конструктивный и конструктивный. Первый рассчитан на использование для теплоизоляционных задач, а последний — для изготовления несущих конструкций различной марочной прочности. Теплоизоляционный бетон на керамзитовом гравии имеет удельный вес от 350 до 400 кг/м³ и ограничивается прочностью на сжатие до 10 кгс/см².

Теплоизоляционно-конструктивный способен выдерживать нагрузки до 75 кгс/см² при объёмном весе в пределах между 700 и 1400 кг/м³. Теплопроводность этого материала может достигать 0,5 ккал/м·ч·°С, что уже уступает теплоизоляционному, для которого эта цифра может доходить до 0,2 ккал/м·ч·°С. Таким образом становится явной закономерность, согласно которой с повышением прочности керамзитобетона, он теряет в своих теплоизоляционных характеристиках.

Плотность керамзитобетона конструктивного назначения делает его хорошей альтернативой тяжёлому бетону при создании различных сложных конструкций, несущих значительные нагрузки. Этот показатель может достигать значения 1700 кг/м³ для материала марки М400, которому характерна прочность 400 кгс/см².

Достоинства керамзита

Характеристики керамзитобетона в таблице
Также материал отличается:

  • Полной безопасностью для здоровья. При проживании в сооружениях, возведенных и керамзита, не будет наблюдаться ухудшения состояния у членов семьи из-за воздействия на организм вредных веществ. Он экологически чист.
  • Уменьшением трудозатрат на укладку блоков благодаря большому размеру элементов. При этом для выполнения работы нет надобности нанимать специальную технику или бригаду работников.
  • Повышенной морозостойкостью (при условии использования высоких марок цемента) и высокой плотностью структуры. Уровень устойчивости к температурам зависит от конструктивного назначения элементов.
  • Небольшой массой – снижает нагрузку на основание.
  • Способностью продолжительное время сохранять отличные показатели.
  • Паропроницаемостью. Дом из керамзита будет «дышать».

Выбирая для сооружения дома или другого строения керамзитобетонные блоки, можно получить прочную и долговечную конструкцию. Использование материала позволит в случае правильного подбора изоляции, отделки и других составляющих сооружения создать оптимальную среду для проживания человека. Только на стадии проектирования обязательно нужно правильно рассчитать ширину стен.

Достоинства и недостатки керамзитобетонных блоков

Подытожим информацию это публикации, еще раз подчеркнув имеющиеся достоинства и, увы, определенные недостатки керамзитобетонных блоков. Надеемся, это поможет читателю в принятии окончательного решения по выбору материала.

К положительным качествам керамзитобетонных блоков можно отнести следующее:

  • Пусть не самые выдающиеся, но все же весьма неплохие на фоне других минеральных стеновых материалов термоизоляционные качества. Правда, как мы уже видели, это практически никогда не избавляет владельца дома от дополнительного утепления стен.
  • Довольно высокий уровень звукоизоляции, в том числе – в части поглощения ударных шумов.
  • Невысокая плотность блоков – это и упрощение транспортных проблем, и снижение нагрузки, оказываемой зданием на фундамент. То есть и основание можно проектировать более лёгкое и дешевое, без потери надежности.
  • Керамзитобетонные блоки обычно значительно прочнее своих «собратьев» из газо- и пенобетона. То есть ограничений по их использованию в строительстве – существенно меньше.
  • Стены из керамзитобетона не склонны к усадке.
  • Блоки совершенно «чисты» — то есть в их производстве применяются только природные материалы.
  • Достаточная степень водостойкости, морозостойкости, механической прочности, устойчивости к возгоранию и к действию открытого пламени, биологической инертности предопределяют весьма солидную долговечность возведенных из керамзитобетонных блоков зданий. Во всяком случае – на 50÷75 лет рассчитывать можно, а то и поболее.
  • Керамзитобетон обладает паропроницаемостью, то есть стены из него не должны мешать естественному парообмену. Правда, не у всех марок материала с этим абсолютное благополучие. Поэтому для домов из таких блоков все же требуется надежная вентиляция. (Добавим, справедливости ради – она требуется вообще для всех домов, без исключения…)
  • Крупный формат блоков, их относительная лёгкость, значительное уменьшение общей протяженности кладочных швов, возможность облегчить фундамент – все это ведет к ускорению процесса строительства, снижению затрат. А если сюда присовокупить еще и невысокую стоимость самого керамзитобетона – получается очень весомое сокращение общей сметы реализации проекта.

Недостатки тоже имеются. Некоторые из них – довольно серьёзные, другие можно считать в чем-то даже условными, «не портящими обшей картины».

  • Блоки плохо поддаются обработке. Материал прочный, но довольно хрупкий, так что для резки блоков необходим специальный инструмент. Обычной ножовкой, как с газобетоном, здесь не обойдешься.
  • Отчасти продолжение первого пункта – ввиду особенностей материала, в нем недостаточно хорошо держится некоторый крепеж. Правда, ассортимент анкеров или дюбелей, подходящих или прямо предназначенных для керамзитобетона, сейчас достаточно широк, и недостаток отнесем к условным.
  • При кладке блоков обычно получаются довольно толстые швы, становящиеся мостикам холода. Но это свойственно большинству кладочных материалов – у кирпича с этим делом еще хуже, просто потому, что швов больше.
  • Кстати, практикуется кладка и на клей, что позволяет резко уменьшить толщину швов. Но для этого должны быть блоки очень высокого качества, с практически идеальной геометрией. Среди керамзитобетонных таких – немного, и стоимость их – несравнимо выше.
  • Выше уже обсуждался вопрос о марках прочности и допустимой этажности строительства. Материал – несколько своеобразный, поэтому лучше не «доверяться интуиции», и не смотреть на соседей, а начинать строительство на основании профессионально проведенных расчётов. Так будет спокойнее.
  • Последний недостаток тоже можно назвать условным – речь идет о неприглядном внешнем виде стены из керамзитобетона, то есть ей требуется обязательная фасадная отделка. Но подобное же можно сказать и о подавляющем большинстве других стеновых материалов. Тем более что кладку, так или иначе, желательно в кратчайшие сроки защитить от внешнего атмосферного воздействия.
Читайте также:  Стандартные размеры входных дверей: требования

Завершим публикацию видеосюжетом, в котором его автор делится своим мнением о достоинствах и недостатках керамзитобетона:

Морозостойкость и огнестойкость

От морозостойкости керамзитобетона зависит долговечность и несущая способность стен. Для керамзитовых блоков ГОСТ установил несколько марок морозостойкости: F25, F35, F50 и F75. Цифры здесь указывают на количество циклов замораживания и оттаивания, которое может без потери прочности выдержать блок, полностью пропитанный водой.

Блоки из керамзита имеют самый высокий класс пожарной безопасности – А1. Это значит, что действии открытого пламени кладка из них не разрушается на протяжении 7–10 часов.

Теплоемкость бетона

Какая существует теплоемкость бетона?

  • Дата: 22-05-2018
  • Просмотров: 79
  • Комментариев:
  • Рейтинг: 18
  • Показатели температурных изменений
  • Как испытывают бетон на теплоемкость при изготовлении

Теплоемкость бетона довольно важный показатель при строительстве любого здания или сооружения. Как правило, такой показатель составляет 0,00001(°С)-1. Обусловлено это тем, что со временем все бетонные конструкции неизбежно претерпевают изменения плотности из-за набухания или усадки. Это происходит даже тогда, когда температура воздуха и уровень влажности вокруг бетона остаются неизменными. Если рассматривать подробно, то сам бетон как каменный материал для строительства формируется из смеси того или иного вида вещества, имеющие вяжущие свойства.

Соотношение между компонентами в бетонной смеси.

Изготовление такого искусственного материала проводится в соответствии с количеством вяжущего вещества и воды. При этом воду можно использовать как питьевую, так и любую другую. И именно исходя из предназначения бетонных материалов, строители производят расчеты по определению нужной теплоемкости смеси. Теплоемкость определяется как удельная величина, которая влияет на расстояние усадочных швов, необходимых для надежности самой конструкции. Существуют разные показатели усадки бетона и особая технология исследования его при изготовлении.

Таблица основных свойств бетона.

Такой процесс, как усадка или, наоборот, набухание бетона, напрямую зависит от количества цементного вещества, замешанного в растворе при его изготовлении. Со временем после строительства и уже ввода здания в эксплуатацию бетон будет постепенно высыхать и на каждый метр линейного размера давать усадку около 0,3 мм. Приблизительно на такую же величину будет происходить и набухание готового материала. Так, при покупке цементного вещества и изготовлении бетона важно знать, что:

  • в зависимости от количества самого цемента в заготовленной массе для изготовления цементных плит необходимо обязательно учитывать расстояние усадочных швов;
  • в среднем усадочный шов должен быть более 1,1 мм на 1 м общих линейных размеров;
  • для бетона коэффициент расширения от температурных колебаний (удельная теплоемкость) составляет 0,00001(°С)-1, и, например, при повышении или понижении температуры на 40° он расширится до 0,8 мм/м.;
  • заготовленная смесь для бетона всегда легче, чем уже готовый материал;
  • он бывает монолитный, тяжелый и пористый, и удельная теплоемкость напрямую зависит от его вида.

Вернуться к оглавлению

Для определения теплоемкости заготовленную массу выкладывают в специальную форму и ставят температурный датчик по центру. Далее она подвергается вибрации, при этом саму форму в месте зазора закрывают крышкой с уплотняющей замазкой, имеющей водонепроницаемые свойства. Для проведения этой процедуры используют аппаратуру, которая одновременно регистрирует и в то же время регулирует температурные колебания внутри формы со смесью.

Форму, в которую укладывают смесь помещают в адиабатическую камеру, способную поддерживать внутри нужную температуру для измерений.

При этом важно отметить, что температура в адиабатической камере должна быть доведена до температуры самой бетонной массы. Все замеры и записи температурных колебаний фиксируются на ленту регистрирующей и регулирующей аппаратуры. В дальнейшем после проведения испытаний проводят расшифровку лент регистрирующей аппаратуры. Важно отметить, что удельная теплоемкость смеси должна быть исследована не позднее 1 часа после ее изготовления, а такое испытание необходимо проводить не менее 5 суток пока температура в камере не превысит 1°.

Таблица теплоемкости некоторых материалов.

Таблица теплоемкости некоторых материалов.

Таблица показывает, какое количество тепла может сохранить в себе 1 кубометр материала при его нагреве на 1 градус.

№ по СНИП Материал Плотность кг/м3 Удельнаятеплоемкость, кДж/кг*oC Кол-во теплана 1 градус, кДж/м3*oC
144 Пенополистирол 40 1,34 54
129 Маты минерало-ватные прошивные 125 0,84 105
143 Пенополистирол 100 1,34 134
145 Пенопласт ПХВ-1 125 1,26 158
142 Пенополистирол 150 1,34 201
67 Газо- и пенобетон газо- и пено-силикат 300 0,84 252
66 Газо- и пенобетон газо- и пено-силикат 400 0,84 336
119 Плиты древесно-волокнистые и древесно-стружечные 200 2,30 460
65 Газо- и пенобетон газо- и пено-силикат 600 0,84 504
64 Газо- и пенобетон газо- и пено-силикат 800 0,84 672
70 Газо- и пено- золобетон 800 0,84 672
83 Листы гипсовые обшивочные (сухая штукатурка) 800 0,84 672
63 Газо- и пенобетон газо- и пено-силикат 1000 0,84 840
69 Газо- и пено- золобетон 1000 0,84 840
118 Плиты древесно-волокнистые и древесно-стружечные 400 2,30 920
68 Газо- и пено- золобетон 1200 0,84 1008
108 Сосна и ель поперёк волокон 500 2,30 1150
109 Сосна и ель вдоль волокон 500 2,30 1150
92 Керамический пустотный 1400 0,88 1232
112 Фанера клееная 600 2,30 1380
117 Плиты древесно-волокнистые и древесно-стружечные 600 2,30 1380
91 Кирпич керамический 1600 0,88 1408
47 Бетон на доменных гранулированных шлаках 1800 0,84 1512
84 Кирпичная кладка (кирпич глиняный) 1800 0,88 1584
110 Дуб поперек волокон 700 2,30 1610
111 Дуб вдоль волокон 700 2,30 1610
116 Плиты древесно-волокнистые и древесно-стружеч-ные 800 2,30 1840
2 Бетон на гравии или щебне из природного камня 2400 0,84 2016
1 Железо-бетон 2500 0,84 2100
113 Картон облицовочный 1000 2,30 2300
115 Плиты древесно-волокнистые и древесно-стружеч-ные 1000 2,30 2300
Вода 1000 4,18 4180
Читайте также:  Сталь 45: характеристики по ГОСТ и область применения

Пример. Сколько тепла будет накоплено в 1 кубометре воды при нагреве ее от 40 градусов до 90 градусов?

Удельная теплоемкость воды при 20o Суд = 4,18 кДж/кг*oС Разница температур Т = 90-40 = 50o Удельный вес г = 1000 кг/м3 Объем v=1 м3 Количество запасенной энергии Э = C*Т*v*г = 4.18*50*1*1000 = 209000 кДж (

Поделитесь этой страницей со своими друзьями:

Еще можно почитать:

Размещено: 04.08.13Обновлено: 14.11.15Просмотров всего: 25068 сегодня: 4 Главная > Справочник > Таблица теплоемкости некоторых материалов.

Теплофизические свойства бетонов

Основные свойства бетона, связанные с воздействием на него тепловой энергии, это теплоемкость, теплопроводность и весьма важный в сфере строительства коэффициент линейного расширения. Без учета данных характеристик бетона невозможно добиться создания прочной конструкции здания, не склонной к разрушению под воздействием температурных колебаний.

Теплопроводность.

Теплопроводность бетона играет существенное значение при определении его строительно-физических качеств. Уровень теплопроводности зависит от структуры составляющих бетона и его строения в целом. Да значение данной характеристики оказывает влияние несколько факторов, среди которых наибольшее значение имеют влажность бетона и его температура. Чем большее количество влаги будет содержаться в бетоне и чем до большей температуры он будет нагрет, тем большей теплопроводностью он будет обладать. При проведении практических расчетов во внимание также принимается значение интегральной пористости. Смысл этого показателя состоит в определении объемного веса бетона при температуре +25С в высушенном до неизменяемого веса состоянии (рис. 1).

Таблица теплопроводности

Кроме того, в строительной практике также может быть использована для расчета теплопроводности формула Б. Н. Кауфмана:

где под корнем стоит фиксированный коэффициент при указанных выше условиях: +25С и полная просушка. Измеряется это значение в ккал/м-ч-град, для высушенного бетона объемный вес выражается в т/м3.

Между тем, приведенная формула не может быть признана единственно верным способом расчета теплопроводности бетона, т.к. в ней не учитываются показатели пористости бетона, т.е. данные о распределении пор по типоразмеру, о степени сообщаемости или замкнутости. Поэтому с помощью данной формулы наиболее близкие к фактической действительности данные можно получить лишь в том случае, когда на стройке используются бетоны одинакового строения и созданные на заполнителях идентичного строения. Приводить здесь и использовать на практике универсальную и наиболее точную формулу для вычисления фактического уровня теплопроводности бетона не имеет смысла, поскольку она учитывает абсолютно все характеристики бетона. Получить подобные данные в условиях индивидуального жилищного строительства весьма проблематично, да и бессмысленно, т.к. при малых масштабах стройки и небольших конструкционных нагрузках небольшая ошибка в значении теплопроводности бетона особой роли не играет.

Коэффициент температурного расширения и теплоемкость бетона.

Под коэффициентом температурного расширения бетона в строительной практике принято понимать величину отклонения физических размеров бетона при изменении его температуры. Если упростить определение, то коэффициент расширения помогает определить, насколько увеличатся длина и ширина бетонного блока, если температура воздуха повысится на сколько-то градусов. Непринятие в расчет этого показателя моет привести к разрушениям возведенных из бетона конструкций при сезонных колебаниях температур.

Тепловое расширение способно привести к растрескиванию

Показатели коэффициентов температурного расширения бетона и стали приблизительно одинаковы, что широко используется при создании железобетонных конструкций высокой прочности.

От показателя теплоемкости бетона зависит скорость прогрева бетона до нужной температуры, а значит, и до нужных физических характеристик. Без учета теплоемкости зачастую попросту невозможно рассчитать время подачи жидкого бетона на объект строительства, особенно в холодное время года. Обычное значение этого показателя для большинства распространенных марок бетона колеблется в пределах от 0,28 до 0,33 ккал/кг .

Что означает теплопроводность бетона и от чего зависит его величина?

Если бетон собираются применять для ограждающих конструкций, тогда необходимо выяснить величину его теплопроводности, она прямо пропорционально зависима от веса материала. Это связано с уменьшением плотности и повышением пористости. А значит, что в один объем вовлекают больше воздуха, что и делает его хорошим теплоизолятором.

Заполнитель бетона (шамот)

Что влияет на данную величину?

  1. от типа заполнителя;
  2. плотности и структуры материала;
  3. равновесия влажности.

Рассмотрим каждый случай по отдельности.

Известно, что теплопроводность бетона зависима от типа заполнителя, потому что при постройке жилого дома для наружных стен в массовом применении так называемые легкие панели, которые имеют различное назначение (конструкционное, теплоизоляционное и др.).

Отметим, что помимо некоторых отклонений, есть и некая зависимость плотности и теплопроводности. Например, если материал находится в кристаллическом состоянии, то эти обе величины имеют большее значение, чем тогда, когда его структура аморфная. Поэтому более популярны те заполнители, в состав которых входит пемза (шлаковая). Ее можно получить во время быстрого охлаждения пористого расплава, так как при данном процессе он не кристаллизуется, а шлакопемзобетон имеет маленькую теплопроводность.

Читайте также:  Угловые камины для дома: дровяные и электрические из кирпича

Ячеистый бетон с низкой теплопроводностью

Если бетон крупнопористый или малопесчанный, то есть имеет неплотную структуру, тогда на его проводность влияет состав гранулометрического заполнителя, так как от него зависима и межзерновая пористость.

Если имеется два вида бетона, у которых объем пор одинаковый, тогда теплопроводность мелкопористого будет меньше, так как она зависима от величины пор.

Если применяют легкий бетон, тогда его влажность (эксплуатационная) связана с равновесием этой же величины в различных условиях (сорбции – поглощение влаги из окружающей среды и десорбции – высыхание заполнителя, который был переувлажнен). При относительной влажности воздуха 60 – 80 % и применении таких заполнителей, как пемза, керамзит, аглопорит, десорбционная влажность не имеет особого значения, так как это относительно малая величина. А если в качестве наполнителя применяют древесные опилки, тогда это заметно влияет на его теплопроводность, так как равновесная влажность составляет 15 %. В ином случае величина десорбционной влажности должна быть выше сорбционной.

Отметим, что если теплопроводность легкого бетона резко увеличится, тогда вместе с ней возрастет и его тепловая потеря, но это в том случае, если вместо воздуха поры материала заполнит вода (теплопроводимость которой составляет 0,58 Вт/ м- °С, что намного больше, чем у воздуха). А зимой ограждающая конструкция, выполненная из такого материала, может промерзнуть, так как данный коэффициент для льда равен 1,8 Вт/м- °С и поэтому в таких условиях теплопроводность бетона увеличивается в разы.

Коэффициент теплопроводности материала

Для того чтобы определить данную величину имеются специальные ГОСТ- ы, которые различны для бетона в сухом состоянии и с отпускной влажностью.

Если бетон легкий и его должны применить для стеновых панелей, тогда он имеет поризованную или плотную однородную структуру, причем объем между зерновыми пустотами, который заполнен раствором цемента и уплотнен бетонной смесью, не должен составить более 3%.

Рассмотрим, коэффициент теплопроводности бетона для разных его видов:

  • Если материал сплошной, тогда эта величина составляет – 1,75;
  • Если бетон пористый – коэффициент равен 1,4;
  • На каменном щебне – 1,3;
  • На песке – 0,7;
  • Термоизоляционный бетон имеет коэффициент 0,18.

Если при изготовлении применяют парообразующие или воздухововлекающие примеси, тогда их объем не должен составить на порцию:

  • Для бетона без песка – более 25;
  • На плотном песке – более 15;
  • На пористом песке – более 12.

Заключение

Подведя итог, отметим, что отпускная влажность легкого бетона для жилых и общественных зданий составляет 15, а для промышленных и сельскохозяйственных сооружений – 13.

Если соблюдать все нормы и требования при производстве панелей, тогда нет необходимости использовать антикоррозийную защиту для арматуры.

Теплоемкость бетона

Этот показатель имеет очень важное значение, поскольку именно от него зависит степень изменения характеристик материала под воздействием разных температур. С течением времени вследствие этого мы может наблюдать осадку или, наоборот, набухание материала. Так как бетон применяется при строительстве зданий, то данный фактор должен учитываться как один из самых важных. И делать это нужно еще на стадии проектирования.

Все, что касается теплоемкости бетона, изложено в этой статье. Из нее же вы узнаете о методике определения данного показателя. С помощью таблицы теплоемкости различных материалов, содержащейся здесь, вы сможете узнать об их способности сохранять определенное количество тепла.

От чего зависит величина теплопроводности бетона? Ответ на этот вопрос вы также узнаете, прочитав статью до конца. Также вы узнаете, к чему приводит температурное расширение этого материала, и о том, как избежать превышения этого параметра при применении бетонных конструкций.

Обладание этими знаниями помогает избежать многих досадных ошибок при строительстве сооружений разного типа.

Теплоемкость бетона довольно важный показатель при строительстве любого здания или сооружения. Как правило, такой показатель составляет 0,00001(°С)-1. Обусловлено это тем, что со временем все бетонные конструкции неизбежно претерпевают изменения плотности из-за набухания или усадки. Это происходит даже тогда, когда температура воздуха и уровень влажности вокруг бетона остаются неизменными. Если рассматривать подробно, то сам бетон как каменный материал для строительства формируется из смеси того или иного вида вещества, имеющие вяжущие свойства.

Соотношение между компонентами в бетонной смеси

Изготовление такого искусственного материала проводится в соответствии с количеством вяжущего вещества и воды. При этом воду можно использовать как питьевую, так и любую другую. И именно исходя из предназначения бетонных материалов, строители производят расчеты по определению нужной теплоемкости смеси. Теплоемкость определяется как удельная величина, которая влияет на расстояние усадочных швов, необходимых для надежности самой конструкции. Существуют разные показатели усадки бетона и особая технология исследования его при изготовлении.

Основные свойства бетона

Такой процесс, как усадка или, наоборот, набухание бетона, напрямую зависит от количества цементного вещества, замешанного в растворе при его изготовлении. Со временем после строительства и уже ввода здания в эксплуатацию бетон будет постепенно высыхать и на каждый метр линейного размера давать усадку около 0,3 мм. Приблизительно на такую же величину будет происходить и набухание готового материала. Так, при покупке цементного вещества и изготовлении бетона важно знать, что:

  • в зависимости от количества самого цемента в заготовленной массе для изготовления цементных плит необходимо обязательно учитывать расстояние усадочных швов;
  • в среднем усадочный шов должен быть более 1,1 мм на 1 м общих линейных размеров;
  • для бетона коэффициент расширения от температурных колебаний (удельная теплоемкость) составляет 0,00001(°С)-1, и, например, при повышении или понижении температуры на 40° он расширится до 0,8 мм/м.;
  • заготовленная смесь для бетона всегда легче, чем уже готовый материал;
  • он бывает монолитный, тяжелый и пористый, и удельная теплоемкость напрямую зависит от его вида.
Читайте также:  Шумоизоляция своей крепости

Для определения теплоемкости заготовленную массу выкладывают в специальную форму и ставят температурный датчик по центру. Далее она подвергается вибрации, при этом саму форму в месте зазора закрывают крышкой с уплотняющей замазкой, имеющей водонепроницаемые свойства. Для проведения этой процедуры используют аппаратуру, которая одновременно регистрирует и в то же время регулирует температурные колебания внутри формы со смесью.

Форму, в которую укладывают смесь помещают в адиабатическую камеру, способную поддерживать внутри нужную температуру для измерений.

При этом важно отметить, что температура в адиабатической камере должна быть доведена до температуры самой бетонной массы. Все замеры и записи температурных колебаний фиксируются на ленту регистрирующей и регулирующей аппаратуры. В дальнейшем после проведения испытаний проводят расшифровку лент регистрирующей аппаратуры. Важно отметить, что удельная теплоемкость смеси должна быть исследована не позднее 1 часа после ее изготовления, а такое испытание необходимо проводить не менее 5 суток пока температура в камере не превысит 1°.

Таблица теплоемкости некоторых материалов

Таблица показывает, какое количество тепла может сохранить в себе 1 кубометр материала при его нагреве на 1 градус.

№ по СНИП Материал Плотность кг/м3 Удельная теплоемкость, кДж/кг*oC Кол-во теплана 1 градус, кДж/м3*oC
144 Пенополистирол 40 1,34 54
129 Маты минерало-ватные прошивные 125 0,84 105
143 Пенополистирол 100 1,34 134
145 Пенопласт ПХВ-1 125 1,26 158
142 Пенополистирол 150 1,34 201
67 Газо- и пенобетон газо- и пено-силикат 300 0,84 252
66 Газо- и пенобетон газо- и пено-силикат 400 0,84 336
119 Плиты древесно-волокнистые и древесно-стружечные 200 2,30 460
65 Газо- и пенобетон газо- и пено-силикат 600 0,84 504
64 Газо- и пенобетон газо- и пено-силикат 800 0,84 672
70 Газо- и пено- золобетон 800 0,84 672
83 Листы гипсовые обшивочные (сухая штукатурка) 800 0,84 672
63 Газо- и пенобетон газо- и пено-силикат 1000 0,84 840
69 Газо- и пено- золобетон 1000 0,84 840
118 Плиты древесно-волокнистые и древесно-стружечные 400 2,30 920
68 Газо- и пено- золобетон 1200 0,84 1008
108 Сосна и ель поперёк волокон 500 2,30 1150
109 Сосна и ель вдоль волокон 500 2,30 1150
92 Керамический пустотный 1400 0,88 1232
112 Фанера клееная 600 2,30 1380
117 Плиты древесно-волокнистые и древесно-стружечные 600 2,30 1380
91 Кирпич керамический 1600 0,88 1408
47 Бетон на доменных гранулированных шлаках 1800 0,84 1512
84 Кирпичная кладка (кирпич глиняный) 1800 0,88 1584
110 Дуб поперек волокон 700 2,30 1610
111 Дуб вдоль волокон 700 2,30 1610
116 Плиты древесно-волокнистые и древесно-стружеч-ные 800 2,30 1840
2 Бетон на гравии или щебне из природного камня 2400 0,84 2016
1 Железо-бетон 2500 0,84 2100
113 Картон облицовочный 1000 2,30 2300
115 Плиты древесно-волокнистые и древесно-стружеч-ные 1000 2,30 2300
Вода 1000 4,18 4180

Пример. Сколько тепла будет накоплено в 1 кубометре воды при нагреве ее от 40 градусов до 90 градусов?

Удельная теплоемкость воды при 20o Суд = 4,18 кДж/кг*oС Разница температур Т = 90-40 = 50o Удельный вес г = 1000 кг/м3 Объем v=1 м3 Количество запасенной энергии Э = C*Т*v*г = 4.18*50*1*1000 = 209000 кДж (

Удельная теплоемкость бетона и его другие характеристики

Используя в строительстве различные материалы, необходимо учитывать все их основные характеристики: именно от них и зависит, насколько крепким, долговечным и теплым получится жилище. Для расчета способности к теплоизоляции обращают внимание на такую величину, как удельная теплоемкость. Бетон считается самым распространенным строительным материалом, сейчас без него не обходится ни одна стройка. Поэтому подробное изучение его основных характеристик поможет оптимально спроектировать конструкцию.

Свойства и описание материала

Бетон неспроста настолько популярен как в частном строительстве, так и в масштабном. Все дело в сочетании в нем практически всех фундаментальных свойств материала, так необходимых для качественной постройки.

К основным физико-техническим характеристикам этого стройматериала относятся:

    Высокая плотность. При наличии требования к повышенной прочности строения бетонный раствор можно усиливать при помощи использования цемента разных марок плотности, а также различных наполнителей — крупного щебня, магнетитовых и лимонитовых пород. Кроме того, крепость изделия можно легко повысить в несколько раз, армировав бетон металлическими прутьями в виде сетки. Чем чаще будет шаг сеточной ячейки, тем прочнее станет конструкция.

  • Долговечность. Ввиду высокой устойчивости к различным деформациям, эрозии, температурным перепадам, а также химическим веществам можно говорить о хороших показателях долговечности бетонных конструкций.
  • Устойчивость к крайне низким температурам.
  • Однородность и вязкость, очень удобные при накладывании раствора на необходимую поверхность. К тому же, однородность бетона напрямую влияет на такой показатель, как прочность.
  • Стойкость к деформационным воздействиям. Бетон имеет довольно высокие показатели относительно устойчивости к сжатию — в таких условиях он обладает определенным уровнем пружинистости. Чтобы наделить бетонные изделия стойкостью к растяжению, скручиванию и другим видам деформации, его армируют. Это значительно увеличивает его устойчивость в условиях постоянного напряжения.
  • Высокая огнестойкость бетона. Этот показатель является одним из важнейших при построении жилого массива, так как напрямую влияет на пожароопасность здания. Но огнеупорность бетона очень высока. Под воздействием критически высокой температуры кристаллогидраты цементного камня распадаются, что сопровождается выделением связанной жидкости. Быстро испаряясь, она забирает на себя бо́льшую часть тепла, поэтому бетонные смеси так стойки к высокотемпературному воздействию.

  • Пластичность бетонного раствора. Эта характеристика обусловливает способность строительной смеси качественно заполнять необходимую форму, не образовывая пустот и раковин. Показатель пластичности зависит от вида используемого цемента, а также от специальных наполнителей.
  • Водонепроницаемость. При использовании расширяющихся марок основной составляющей бетонного раствора эта характеристика существенно повышается. Бетон с высоким уровнем гидрофобности не пропускает и не впитывает воду и другие жидкости, поэтому часто используется для строительства фундаментов в условиях повышенной сырости, а также при заливке форм для бассейнов и прудов.
  • Теплоизоляционные характеристики увеличиваются с повышением пористости материала путем добавления пористых наполнителей.
  • Это лишь основные свойства бетонной смеси, которые позволяют ей удерживать лидерство на рынке строительных материалов.

    Теплоизоляционные характеристики

    Теплоемкость материала — это величина, характеризующая его способность к поглощению тепла при нагревании и его отдаче при охлаждении. Благодаря этому значению можно рассчитывать, из какого материала лучше построить жилое помещение, насколько оно будет теплым и как долго сможет сохранять тепло при отоплении.

    Бетонные смеси, отличающиеся повышенной плотностью, не обладают высокой теплоемкостью. Однако условия, в которых они используются, этого и не требуют. Особо тяжелые бетоны характеризуются очень большим весом, по этой причине они не применяются в индивидуальном строительстве, зато активно используются при сооружении глобальных конструкций гидротехнического назначения или, например, железнодорожных и автомобильных мостов, метро и других стратегических объектов. В этих случаях способность к теплоизоляции не является приоритетом.

    Что касается жилых построек, здесь теплоемкость имеет крайне важное значение. В конце концов, этот показатель оказывает прямое влияние на количество стройматериала, используемое для возведения стен. Однако повышение пористости, что является обязательным залогом увеличения теплоизоляционных свойств, непременно повлияет на прочность здания не в лучшую сторону. Чтобы компенсировать уменьшение крепости, в бетонные плиты помещают армирующую сетку. Тогда и прочность остается на высоте, и теплоемкость не страдает.

    Таблица показателей

    Различные стройматериалы обладают разными показателями теплоемкости и теплопроводности. Это можно использовать при расчете толщины стен.

    Так, теплоизоляционные свойства распространенных строительных материалов демонстрирует таблица.

    Материал Плотность, кг/м3 Теплоемкость, кДж/кг*С
    Пенополистирол 40−100 1,34
    Кирпичная кладка 1800 0,88
    Газо- и пенобетон, газо- и пеносиликат 300−800 0,84
    Бетон 2200 1,13
    Железобетон 2500 0,84
    Металлоконструкции 7833 0,46

    Как видно из таблицы, удельная теплоемкость бетона довольно высока в сравнении с другими материалами, поэтому его использование в строительстве имеет массу преимуществ перед другими материалами.

    Способы повышения теплоемкости

    Разновидности бетонов с высоким показателем теплоемкости называются легкими или особо легкими. Наполнители, использующиеся для их создания, отличаются пористой структурой и небольшим весом. К ним относятся такие виды:

  • Натуральные заполнители: включают в себя пемзовые породы, вулканические туфы и шлаки, а также карбонаты — различные кальциты, ракушечники, известняковые туфы.
  • Искусственно созданные материалы — керамзит, перлит, вермикулит, а также аглопорит, грануляты шлаков и другие.
  • Промышленные отходы — золошлаки, топливные или металлургические шлаки, а также крупнодисперсные золы.
  • К самым распространенным, а также суперлегким материалам для заполнения бетонного раствора, относится полистирол. Он представляет собой мелкие шарики. Бетон с полистирольным включением отличается самой высокой теплоемкостью из всех используемых наполнителей, однако этот материал характеризуется снижением других качеств:

    • Огнеупорность. При воздействии высокой температуры внешние данные бетонополистирола не изменяются, но внутри происходит выгорание полистирольных шариков, что в дальнейшем скажется на увеличении хрупкости сооружения, а также на увеличении теплопередачи.
    • Прочность. Легкие и суперлегкие бетоны не обладают высокими показателями прочности, однако этот недостаток можно легко компенсировать путем включения в них арматуры. Правда, вес конструкции в этом случае увеличится, но зато повысится деформационная устойчивость и, как следствие, долговечность здания.
    • Паропроницаемость. Вследствие значительного процента наполняющего материала на бетонополистирол переносится и часть его качеств. Полистирол отличается крайне низкой паропроницаемостью. В случае использования для строительства этого компонента следует позаботиться о хорошей вентиляционной системе.

    В противном случае, внутри на стенах постройки будет скапливаться конденсат из-за повышенной влажности, что негативно скажется и на здоровье, и на внутреннем покрытии, например, обоях. Постоянная сырость поспособствует развитию плесени и грибков, от которых не так просто избавиться даже во время капитального ремонта квартиры.

    Так как все эти недостатки можно в некоторой степени компенсировать различными способами, то полистиролбетон пользуется значительной популярностью у застройщиков.

    Сравнительная характеристика стройматериалов

    Для сравнения приведена таблица удельной плотности и веса различных видов бетона, из которой явственно видно, насколько бетон с полистиролом легче остальных разновидностей.

    Вид бетона Удельная плотность, кг/м3
    Полистиролбетон (в зависимости от марки цемента и процентного содержания полистирола) 150−600
    Особо тяжелые бетоны (магнетитовые, лимонитовые, баритовые и др.) около 2500
    Конструктивные бетоны (с пемзой, керамзитом, аглопоритом, туфом и другими подобными наполнителями) 1500−1800
    Тяжелый бетон с гранитовым наполнением 2100−2300
    Бетонные растворы с известняком 1900
    Гравийные смеси (в зависимости от размера фракции) 1800−2100

    Кроме того, теплопроводность полистирола позволяет делать стены более тонкими, что уменьшает трудозатраты на строительство, а также финансовые затраты на транспортировку и погрузку стройматериала.

    Бетон и сам имеет хорошую теплоемкость, а в сочетании с полистиролом он является просто незаменимым теплоизоляционным материалом, который может использоваться как самостоятельно, так и для дополнительного утепления помещений.

    Применение в строительстве

    Бетон и сходные ним по составу смеси использовались еще во времена Римской империи. Тогда, конечно, составляющие несколько отличались от современного материала, однако можно с уверенностью сказать, что и тогда эти конструкции отличались высокой прочностью.

    В наше время бетон используется для строительства повсеместно — это едва ли не самый распространенный стройматериал. Учитывая его многочисленные положительные свойства, его лидерство вполне оправдано.

    Бетонные смеси применяются для заливки фундаментов любой сложности, из них изготавливают как монолитные заливные конструкции, так и сборные. К сборным относятся плиты для возведения стен и потолочных перекрытий, балки и другие. Железобетонные конструкции, как обладающие повышенной прочностью, применяют в строительстве шахт для укрепления стен горных выработок, метро, мостов, плотин, атомных электростанций и других строений с повышенной нагрузкой и высокими требованиями к надежности и безопасности.

    В зависимости от состава существует много разновидностей бетона. Это позволяет подобрать подходящий материал с необходимыми свойствами в любой отрасли промышленности.

    Бетоном укрепляют неустойчивые грунты и герметизируют щели, используют для облицовки как внутренних стен помещения, так и фасадов. Асфальтобетонной смесью повышенной прочности выстилают автодороги и взлётно-посадочные полосы. Кроме того, бетон используют для изготовления тротуарной плитки, декоративного искусственного камня для наружной и внутренней отделки. Специальные гидротехнические смеси применяют в строительстве каналов, бассейнов и водохранилищ, а также небольших искусственных водоемов на частных участках.

    При проектировании любых строительных работ следует учитывать все характеристики бетонных смесей и требования к конструируемому сооружению. Немаловажным показателем служит теплоемкость бетона в квт, а также теплопроводность, особенно при построении жилых помещений.

    Теплофизические свойства бетонов

    Основные свойства бетона, связанные с воздействием на него тепловой энергии, это теплоемкость, теплопроводность и весьма важный в сфере строительства коэффициент линейного расширения. Без учета данных характеристик бетона невозможно добиться создания прочной конструкции здания, не склонной к разрушению под воздействием температурных колебаний.

    Теплопроводность.

    Теплопроводность бетона играет существенное значение при определении его строительно-физических качеств. Уровень теплопроводности зависит от структуры составляющих бетона и его строения в целом. Да значение данной характеристики оказывает влияние несколько факторов, среди которых наибольшее значение имеют влажность бетона и его температура. Чем большее количество влаги будет содержаться в бетоне и чем до большей температуры он будет нагрет, тем большей теплопроводностью он будет обладать. При проведении практических расчетов во внимание также принимается значение интегральной пористости. Смысл этого показателя состоит в определении объемного веса бетона при температуре +25С в высушенном до неизменяемого веса состоянии (рис. 1).

    Таблица теплопроводности

    Кроме того, в строительной практике также может быть использована для расчета теплопроводности формула Б. Н. Кауфмана:

    где под корнем стоит фиксированный коэффициент при указанных выше условиях: +25С и полная просушка. Измеряется это значение в ккал/м-ч-град, для высушенного бетона объемный вес выражается в т/м3.

    Между тем, приведенная формула не может быть признана единственно верным способом расчета теплопроводности бетона, т.к. в ней не учитываются показатели пористости бетона, т.е. данные о распределении пор по типоразмеру, о степени сообщаемости или замкнутости. Поэтому с помощью данной формулы наиболее близкие к фактической действительности данные можно получить лишь в том случае, когда на стройке используются бетоны одинакового строения и созданные на заполнителях идентичного строения. Приводить здесь и использовать на практике универсальную и наиболее точную формулу для вычисления фактического уровня теплопроводности бетона не имеет смысла, поскольку она учитывает абсолютно все характеристики бетона. Получить подобные данные в условиях индивидуального жилищного строительства весьма проблематично, да и бессмысленно, т.к. при малых масштабах стройки и небольших конструкционных нагрузках небольшая ошибка в значении теплопроводности бетона особой роли не играет.

    Коэффициент температурного расширения и теплоемкость бетона.

    Под коэффициентом температурного расширения бетона в строительной практике принято понимать величину отклонения физических размеров бетона при изменении его температуры. Если упростить определение, то коэффициент расширения помогает определить, насколько увеличатся длина и ширина бетонного блока, если температура воздуха повысится на сколько-то градусов. Непринятие в расчет этого показателя моет привести к разрушениям возведенных из бетона конструкций при сезонных колебаниях температур.

    Тепловое расширение способно привести к растрескиванию

    Показатели коэффициентов температурного расширения бетона и стали приблизительно одинаковы, что широко используется при создании железобетонных конструкций высокой прочности.

    От показателя теплоемкости бетона зависит скорость прогрева бетона до нужной температуры, а значит, и до нужных физических характеристик. Без учета теплоемкости зачастую попросту невозможно рассчитать время подачи жидкого бетона на объект строительства, особенно в холодное время года. Обычное значение этого показателя для большинства распространенных марок бетона колеблется в пределах от 0,28 до 0,33 ккал/кг .

    Бетоны. Метод определения тепловыделения при твердении

    Стандарт распространяется на цементные бетоны и устанавливает метод определения удельного тепловыделения цемента в бетоне, твердеющем в адиабатических условиях, путем установления величины подъема температуры во времени и последующего проведения необходимых расчетов.

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

    МЕТОД ОПРЕДЕЛЕНИЯ ТЕПЛОВЫДЕЛЕНИЯ ПРИ ТВЕРДЕНИИ

    ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
    ПО ДЕЛАМ СТРОИТЕЛЬСТВА

    Всесоюзным ордена Трудового Красного Знамени научно-исследовательским институтом гидротехники имени Б.Е. Веденеева (ВНИИГ им. Б.Е. Веденеева) Министерства энергетики и электрификации СССР

    Научно-исследовательским сектором Гидропроекта имени С.Я. Жука Министерства энергетики и электрификации СССР

    Грузинским научно-исследовательским институтом энергетики и гидротехнических сооружений (ГрузНИИЭГС) Министерства энергетики и электрификации СССР

    В.Б. Судаков, канд. техн. наук (руководитель темы); А.А. Борисов, канд. техн. наук; С.В. Шаркунов; А.С. Магитон; Г.И. Чилинаришвили, канд. техн. наук; И.И. Костин; А.Д. Осипов, канд. техн. наук

    ВНЕСЕН Министерством энергетики и электрификации СССР

    Зам. министра Ф.В. Сапожников

    УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 19 июня 1980 г. № 90

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

    Метод определения тепловыделения при твердении

    Concrete. Methods of the determination
    of exethermic neat in concrete

    Постановлением Государственного комитета СССР по делам строительства от 19 июня 1980 г. № 90 срок введения установлен

    Настоящий стандарт распространяется на цементные бетоны и устанавливает метод определения удельного тепловыделения цемента в бетоне, твердеющем в адиабатических условиях, путем установления величины подъема температуры во времени и последующего проведения необходимых расчетов.

    Метод следует применять при возведении массивных сооружений, которые требуют принятия в конкретных условиях специальных мер к регулированию температурных напряжений, возникающих в результате выделения тепла цементом в твердеющем бетоне.

    1. ИЗГОТОВЛЕНИЕ БЕТОННОГО ОБРАЗЦА

    1.1 . Подбирают бетон реального состава, рассчитывают расход составляющих этого бетона (гравий, щебень, песок, цемент, вода, добавки) в зависимости от объема применяемых форм и приготовляют бетонную смесь.

    Составляющие и форму с крышкой взвешивают с погрешностью до 0,1 %.

    (Измененная редакция).

    2. АППАРАТУРА

    2.1 . Для установления величины подъема температуры в твердеющем бетоне применяют адиабатический калориметр, в состав которого входит следующая аппаратура:

    адиабатическая камера, которая должна быть изготовлена из материала малой теплопроводности, снабжена устройством для подогрева и охлаждения воздуха в камере, вентиляторами для обеспечения непрерывного его перемешивания и устройством для автоматического поддержания адиабатического режима твердения бетонного образца с допустимым отклонением температуры среды от температуры бетона не более 0,2 ° С. Допускается применение адиабатических камер с водной средой с устройством для ее охлаждения, нагрева и интенсивного перемешивания;

    формы для изготовления образцов-кубов с ребром длиной 400 мм или образцов-цилиндров диаметром и высотой 400 мм. Для изготовления образцов-кубов из бетонов с заполнителем максимальной крупностью 20 и 40 мм допускается применять формы с ребром длиной 200 и 300 мм, а для изготовления образцов-цилиндров формы диаметром 200 и 300 мм. Высоту цилиндра следует принимать равной его диаметру. Теплоемкость формы не должна превышать 5 % теплоемкости бетонного образца. Формы должны быть оснащены крышкой, поддоном-тележкой и кожухом;

    самопишущие приборы, регистрирующие температуру бетона и в камере, которые должны обеспечивать измерение температуры до 100 ° С с погрешностью не более 0,25 %.

    (Измененная редакция).

    2.2 . Адиабатический калориметр следует изготавливать по технической документации, утвержденной в установленном порядке.

    2.3 . Адиабатический калориметр через каждые три месяца и после длительной (более года) остановки следует регулировать с целью обеспечения его работы в адиабатическом режиме в соответствии с обязательным приложением 1 .

    2.4 . Поверка приборов измерения температуры производится в соответствии с требованиями стандартов системы обеспечения единства измерений.

    3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

    3.1 . Приготовленную бетонную смесь укладывают в форму, в центр образца вводят датчики температуры для регистрирующей и регулирующей аппаратуры и бетонную смесь вибрируют.

    Датчики внутри камеры размещают на уровне центра образца. Форму с бетонной смесью закрывают крышкой, зазор между крышкой и формой уплотняют водонепроницаемой замазкой.

    Примечание . Допускается в центр образца в процессе укладки и уплотнения бетонной смеси помещать медную или латунную трубку с трансформаторным маслом, в которую затем вводят датчики температуры для регистрирующей и регулирующей аппаратуры.

    В калориметрах с водной средой крышка должна быть с резиновой прокладкой и прижиматься к форме болтами.

    3.2 . Температуру в адиабатической камере доводят до температуры испытуемой бетонной смеси.

    3.3 . Форму с бетонной смесью закрывают кожухом и помещают в адиабатическую камеру, которую затем плотно закрывают.

    3.4 . Включают автоматическое регулирующее устройство адиабатической камеры, которое обеспечивает поддержание температуры в камере, равной температуре бетона в процессе его твердения.

    3.5 . Включают регистрирующий прибор, который производит автоматический замер и запись температуры бетона на ленту самопишущего прибора. Начальная температура бетонной смеси должна быть замерена после ее укладки в форму не позднее 1 ч.

    3.6 . Замеры следует продолжать до тех пор, пока рост температуры бетона будет превышать 1 ° С за 5 сут.

    Могут быть установлены другие сроки проведения испытания.

    4. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЯ

    4.1 . Температуру бетона с лент регистрирующих приборов записывают в журнал в соответствии со справочным приложением 2 .

    Кривую подъема температуры строят в соответствии со справочным приложением 3.

    4.2 . Удельное тепловыделение цемента в бетоне q , кДж/кг (ккал/кг), за данный промежуток времени определяют по формуле

    где Собщ = Сб.с + Сф – теплоемкость бетонной смеси и формы, кДж/К (ккал/ ° С);

    m ц – масса цемента, кг;

    t – начальная температура бетонной смеси, К ( ° С);

    t – температура бетона в конце данного промежутка времени, К ( ° С);

    С б.с – теплоемкость бетонной смеси, кДж/К (ккал/ ° С);

    С ф – теплоемкость формы, кДж/К (ккал/ ° С).

    (Измененная редакция).

    4.3 . Теплоемкость бетонной смеси Сб.с вычисляют по формуле, кДж/К

    или по формуле, ккал/ ° С

    m щ – масса щебня (гравия), кг;

    Приведенная формула расчета теплоемкости может применяться, если удельные теплоемкости составляющих бетонную смесь материалов неизвестны. При наличии этих данных следует применять формулу

    где Су.ц – удельная теплоемкость цемента, кДж (кг × К) [ккал/(кг × ° C)];

    С у.п – удельная теплоемкость песка, кДж (кг × К) [ккал/(кг × ° C )];

    С у.щ – удельная теплоемкость щебня, кДж (кг × К) [ккал/(кг × ° C )].

    (Измененная редакция).

    4.4 . Теплоемкость формы Сф, кДж/К (ккал/ ° С), вычисляют по формуле

    где Ст.ф – удельная теплоемкость материала формы, кДж (кг × К) [ккал/(кг × ° C )];

    m ф – масса формы с крышкой, кг.

    (Измененная редакция).

    4.5 . Повышение температуры бетона с поправкой на теплоемкость формы D t вычисляют по формуле

    4.6 . Расчет удельного тепловыделения цемента в бетоне производят с погрешностью до 0,1 ккал/кг и результаты заносят в журнал (см. приложение 2 ).

    4.7 . Удельное тепловыделение цемента в бетоне, твердеющего в адиабатических условиях, определяют как среднее значение результатов испытания не менее трех образцов, изготовленных из бетона одинакового состава и имеющих одинаковую начальную температуру бетонной смеси ( ± 1 ° С).

    (Измененная редакция).

    4.8 . Полученные данные об удельном тепловыделении цемента в бетоне следует применять при разработке мероприятий по снижению температурных напряжений в возводимых массивных сооружениях.

    ПРИЛОЖЕНИЕ 1

    Обязательное

    РЕГУЛИРОВКА АДИАБАТИЧЕСКОГО КАЛОРИМЕТРА

    Для регулировки калориметра изготавливают образец из бетона реального состава, в котором цемент заменяют мелкодисперсным инертным материалом, или используют «старый» бетонный образец с законченным экзотермическим процессом.

    Затем образец разогревают до температуры 30 – 40 ° С и продолжают испытания в соответствии с требованиями пп. 3.2 – 3.5 настоящего стандарта.

    Адиабатический калориметр следует считать отрегулированным, если отклонение температуры образца от начальной не будет отличаться на 0,5 ° С в течение 10 сут.

    В случае отклонения температуры образца от начальной выше установленного уровня следует провести соответствующее регулирование приборов и испытание калориметра повторить.

    Теоретический расчет теплофизических свойств цементных бетонов с использованием теплоемкого заполнителя Текст научной статьи по специальности « Технологии материалов»

    Аннотация научной статьи по технологиям материалов, автор научной работы — Назиров Рашит Анварович, Волков Александр Николаевич

    Приведены расчеты составов бетонов с энергоэффективным заполнителем в виде инкапсулированной воды и водными растворами солей отходами аффинажного производства. Определены плотность, теплоемкость и теплопроводность бетонов с разной объемной долей заполнителя. Показано влияние теплоемкого заполнителя на основные теплофизические свойства бетонов с матрицей из тяжелого и легкого бетонов. Экспериментальным путем установлена теплоемкость водных растворов солей, которая составила не менее 3 кДж/кг∙°С.

    Похожие темы научных работ по технологиям материалов , автор научной работы — Назиров Рашит Анварович, Волков Александр Николаевич

    THEORETICAL CALCULATION OF THERMAL PROPERTIES OF CEMENT CONCRETES WITH THERMAL STORAGE AGGREGATE

    The paper presents calculations of concrete compositions with energy-efficient aggregate in the form of encapsulated water with its various volume contents. Density, heat capacity and thermal conductivity of concretes are determined with the various volume ratio of thermal storage aggregate . The influence of thermal storage aggregate on basic thermal properties of cement concretes with heavy and light concrete matrix is shown herein. Heat capacity of 3 kJ/kg×°C for aqueous solution of salts was obtained experimentally.

    Текст научной работы на тему «Теоретический расчет теплофизических свойств цементных бетонов с использованием теплоемкого заполнителя»

    НАЗИРОВ РАШИТАНВАРОВИЧ, докт. техн. наук, профессор, nazirovra@gmail.com

    ВОЛКОВ АЛЕКСАНДР НИКОЛАЕВИЧ, аспирант, volkov-sasha@yandex.ru Инженерно-строительный институт, ^бирский федеральный университет, 660041, г. Красноярск, пр. Свободный, 82

    ТЕОРЕТИЧЕСКИЙ РАСЧЕТ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ЦЕМЕНТНЫХ БЕТОНОВ С ИСПОЛЬЗОВАНИЕМ ТЕПЛОЕМКОГО ЗАПОЛНИТЕЛЯ

    Приведены расчеты составов бетонов с энергоэффективным заполнителем в виде инкапсулированной воды и водными растворами солей – отходами аффинажного производства. Определены плотность, теплоемкость и теплопроводность бетонов с разной объемной долей заполнителя. Показано влияние теплоемкого заполнителя на основные теплофизические свойства бетонов с матрицей из тяжелого и легкого бетонов. Экспериментальным путем установлена теплоемкость водных растворов солей, которая составила не менее 3 кДж/кг-°С.

    Ключевые слова: теплоемкие бетоны; теплоемкий заполнитель; расчет составов; теплофизические свойства; аккумуляция тепла.

    RASHITA. NAZIROV, DSc, Professor, nazirovra@gmail.com

    ALEKSANDR N. VOLKOV, Research Assistant,

    Civil Engineering Institute, SibFU,

    82, Svobodnyi Ave., 660041, Krasnoyarsk, Russia

    THEORETICAL CALCULATION OF THERMAL PROPERTIES OF CEMENT CONCRETES WITH THERMAL STORAGE AGGREGATE

    The paper presents calculations of concrete compositions with energy-efficient aggregate in the form of encapsulated water with its various volume contents. Density, heat capacity and thermal conductivity of concretes are determined with the various volume ratio of thermal storage aggregate. The influence of thermal storage aggregate on basic thermal properties of cement concretes with heavy and light concrete matrix is shown herein. Heat capacity of 3 kJ/kg-°C for aqueous solution of salts was obtained experimentally.

    Keywords: thermal storage concrete; thermal storage aggregate; composition calculations; thermal properties; heat accumulation.

    Для повышения комфорта в помещении и снижения энергоёмкости строительных систем актуальной является оценка эффективности составов бетонов с использованием теплоемкого заполнителя и материалов с переменным фазовым состоянием. Применение таких материалов направлено на регу-

    © Р.А. Назиров, А.Н. Волков, 2014

    лирование некоторых показателей, таких как сдвиг по фазе и амплитуда колебания температур на поверхности и в объеме материала. Это позволяет нивелировать экстремальные значения температур, накапливать тепловую энергию и тем самым экономить электрическую и тепловую энергию [1]. В качестве примера в статье представлен расчет и результаты теоретических исследований составов бетонов с энергоэффективным заполнителем в виде инкапсулированной воды и водных растворов солей с различным объемным содержанием. Применение инкапсулированных водных растворов солей позволяет значительным образом понизить температуру замерзания воды без существенного уменьшения теплоемкости заполнителя.

    Составы бетонов обычно рассчитывают по абсолютным объемам. Расчетную величину плотности бетона р, содержащего менее плотный, но имеющий большую теплоемкость заполнитель, можно определить как сумму плотностей растворной части и заполнителя, умноженных на соответствующие объемные доли их содержания в 1 м3 бетона:

    Р = Рт-Ф» +Рь О-Фт) , (1)

    где рт – плотность затвердевшей растворной части бетона, в которой распределен заполнитель; р^ – плотность теплоемкого заполнителя; фт – объемная доля растворной части в бетоне.

    Теплоемкость бетона можно рассчитать по формуле [2, 3]

    где А,,-, а,- и ф,- – соответственно теплопроводность, температуропроводность и объемная доля ,-х компонентов бетона.

    Таким образом, зная расчетную плотность бетона р, теплоемкости растворной части ст и заполнителя сь, его теплоемкость С можно рассчитать по формуле

    С = С» Р»Фт + Сь -^(1 -фт ). (3)

    Наиболее трудно прогнозируется теплопроводность бетонов. Основной причиной является сложность многокомпонентной структуры, формирующейся в процессе изготовления и твердения бетона, зависящей от специфики технологий производства и твердения материала. Имеется множество публикаций по расчету теплопроводности многокомпонентных твердых систем, анализ которых проведен нами в исследовании [4].

    Максимальную и минимальную теплопроводность бетона как системы, состоящей из двух компонентов – раствора и крупного заполнителя, можно рассчитать, применяя метод электроаналогии так, как если бы растворная часть и заполнитель располагались послойно вдоль или поперек направления теплового потока:

    Атах = Ат ‘ Фт +АЬ (1 -Фт ) , (4)

    Совершенно очевидно, что максимальное значение теплопроводности получается при расположении этих слоев вдоль направления теплового потока, формула (4), а минимальное – поперек, формула (5).

    Для ориентировочных расчетов эффективной теплопроводности X нами принята средняя величина между значениями, рассчитанными по формулам (4) и (5):

    В результате проведенных теоретических расчетов, согласно приведенным выше формулам, получены графики изменения плотности, теплоемкости и теплопроводности цементных бетонов с матрицей из тяжелого бетона в зависимости от объемной доли заполнителя в виде обыкновенной воды (рис. 1). В расчете использованы справочные значения теплоемкости и теплопроводности бетонов: для матрицы из тяжелого бетона – ст = 840 Дж/кг-°С, Хт = 1,5 Вт/м°С, рт = 2400 кг/м3; для матрицы из легкого бетона -Ст = 840 Дж/кг-°С, Хт = 0,4 Вт/м°С, Рт = 600 кг/м3 и воды Сь = 4180 Дж/кг-°С, Хь = 0,6 Вт/м°С, рь = 998 кг/м3.

    Хорошо видно, что изменяя объемную долю теплоемкого заполнителя от 10 до 90 %, можно значительно увеличить теплоемкость бетонов с 990 до 3500 Дж/кг-°С при одновременном снижении плотности с 2260 до 1130 кг/м3 и теплопроводности с 1,36 до 0,64 Вт/м-°С.

    н о о и н о ч С

    0,2 0,4 0,6 0,8 1 Объемная доля заполнителя

    Рис. 1. Изменение плотности, теплопроводности и теплоемкости бетонов с матрицей из тяжелого бетона плотностью 2400 кг/м3

    Для теплоемких бетонов с матрицей из легкого бетона наблюдается обратная связь, как это видно на рис. 2. С увеличением доли более плотного

    и теплопроводного заполнителя от 10 до 90 % плотность бетона увеличивается от 640 до 960 кг/м3, а теплопроводность с 0,4 до 0,6 Вт/м°С, одновременно повышается и теплоемкость от 1361 до 3971 Дж/кг-°С.

    Следует отметить, что теплоемкость бетона с матрицей из тяжелого бетона увеличивается в 3,51 раза, а с матрицей из легкого – только в 2,92 раза. Теплопроводность и плотность бетонов с матрицей из тяжелого бетона уменьшается в 2 раза, а с матрицей из легкого они увеличиваются.

    плотность, кг/м3 теплоемкость, Дж/кг-°С-10-3 теплопроводность, Вт/м-°С

    0,2 0,4 0,6 0,8 1 Объемная доля заполнителя

    Рис. 2. Изменение плотности, теплопроводности и теплоемкости бетонов с матрицей из

    легкого бетона плотностью 600 кг/м”

    На рис. 3 хорошо видно, что удельное количество тепла, накопленное при нагреве разработанными составами, меньше, чем у воды, однако значительно больше рядовых составов тяжелых и легких бетонов.

    -ьина —•—обычный тяжелый б Надоели баннеры? Вы всегда можете отключить рекламу.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: