Цветопередача светодиодных ламп: описание с фото, отзывы, советы

Все об индексе цветопередачи CRI и новых стандартах качества света

Прежде чем разобраться, что такое индекс цветопередачи, стоит упомянуть о спектральном составе света и способности его отражения и поглощения окружающими нас предметами.

Спектральный состав – это набор частот, которые характеризуют то или иное излучение.

Говоря простыми словами, данная характеристика отражает наличие или отсутствие определенных цветовых оттенков в свете. Все окружающие человека предметы обладают свойством поглощения и отражения этих световых оттенков. Например, предмет зеленого цвета отражает зеленую часть спектра падающего света, остальная часть спектра им поглощается. Чем качественнее свет освещает предметы, тем лучше человеческий глаз различает их цвета.

Colour rendering index (CRI)

На сегодняшний момент самой используемой методикой оценки качества источников света является индекс цветопередачи (англ. colour rendering index). Данный коэффициент имеет безразмерную величину и в международной системе измерения (СИ) обозначается как CRI или Ra. Диапазон значений CRI лежит в интервале от 0 до 100. Индекс цветопередачи показывает, насколько естественный цвет имеют предметы при освещении. Эталоном принято считать солнечный свет, CRI которого равен 100. До 1974 года Международной Комиссией по Освещению (МКО) данная методика подразумевала сравнение 8 эталонных цветов с цветами, полученными от тестируемого источника света. В 1974 году к 8 эталонным ненасыщенным цветам добавилось еще 6 дополнительных, но уже насыщенных цветов. Методика измерения CRI заключается в расчете цветовых сдвигов 14 образцов относительно освещения солнечного света или излучения раскаленного абсолютно черного тела.

Процесс измерения происходит следующим способом:

  • исследуемый источник света направляется на шаблонный образец;
  • при помощи специальных приборов измеряется цвет образца;
  • образец освещается эталонным светом;
  • замеряется цвет образца под эталонным светом;
  • рассчитывается разница под различными источниками света.

Вышеописанный алгоритм повторяется со всеми шаблонными образцами, после чего вычисляется среднее арифметическое значение CRI.

Недостатки индекса цветопередачи и пути их решения

Определение индекса цветопередачи является полноценным только в случае с лампами непрерывного спектра, коэффициент CRI которых выше 90. При значениях ниже 90 единиц можно получить несколько источников, которые будут иметь одинаковый коэффициент, но по-разному освещать предметы и отличаться цветовой температурой. Пока международным организациям по стандартизации не удаётся избавиться от данного недостатка, производители ламп продолжают указывать на своей продукции значение в CRI.

Сегодня вектор развития искусственного освещения опирается на белые светодиоды, у которых цветопередача шаблона R9 не очень высока. Причина этого заключается в небольшом количестве красного цвета в спектре. Однако визуально цветопередача белых светодиодов находится на более высоком уровне, нежели указывает расчетное значение CRI. В 2007 году МКО официально констатировала недостаточность использования индекса CRI для определения качества передачи цвета светильников на основе белых светодиодов. Также учёные заявили о необходимости введения новой методики, которая позволит более точно оценить светодиодное излучение.

В 2010 году появилась новая методика — CQS (аббр. от англ. color quality scale), основанная на 15 только насыщенных цветовых шаблонах. В первую очередь стоит отметить, что расчет цветовых сдвигов по методике CQS производится совершенно иным способом, нежели в методики CRI. Поэтому высокий цветовой сдвиг по одному из шаблонов не позволяет цветовому индексу оставаться высоким.

Красный цвет в шкале CQS не такой насыщенный, как в шкале CRI. Это позволяет параметру цветопередачи, при тестировании продукции на основе светодиодов, численно примерно соответствовать световым ощущениям человека.

Методика CQS, так же как и CRI, имеет один существенный недостаток – отсутствие корректировки параметра в зависимости от тона и насыщенности, что позволяло бы учитывать особенности человеческого зрения видеть белый цвет из смеси свечения от цветных светодиодов.

Недостаток методики CQS привело к появлению в середине 2015 года стандарта ТМ-30-15, который учитывает понятия точности и насыщенности. Для более высокой точности измерения в новом стандарте оценка качества света ведется не по 15, а по 99 шаблонам, включающим в себя не только цветовые образцы, но и различные объекты из жизни.

Читайте также:  Электрические котлы Галан: принцип работы, виды электрокотлов, достоинства и недостатки электродных котлов

Индекс цветопередачи в светодиодных лампах

Сегодня стандарт ТМ-30-15 не является обязательным, поэтому производители осветительной продукции на основе светодиодов продолжают оперировать понятием CRI. Стоит подчеркнуть, что методика измерения CRI не способно дать качественную оценку свету. Однако в подавляющем большинстве случаев потребителю приходится опираться лишь на этот коэффициент. Индекс цветопередачи светодиодных ламп может находиться в достаточно широком диапазоне значений CRI, поэтому уделять внимание этому параметру однозначно нужно. Специалисты, работающие в области освещения, рекомендуют выбирать для жилых помещений светодиодные лампочки с коэффициентом CRI близким к 90. В этом случае предметы интерьера будут выглядеть наиболее естественно.

Светодиодные лампы с CRI меньше 70 пригодны только для производственного и уличного освещения, где точность передачи оттенков не является первостепенной.

Из всего вышеописанного следует вывод, что коэффициент цветопередачи в светодиодных лампах, несмотря на присущие методике недостатки, имеет такое же значение, как и другие технические характеристики (мощность, цветовая температура и пр.). Особенно важно это понимать при выборе освещения детской комнаты. Перед детьми постоянно появляются новые яркие предметы, окрас которых принимается за норму и на всю жизнь откладывается в памяти. Низкокачественные светодиодные лампы способствуют формированию неправильного восприятия цветов, окружающих их предметов. Поэтому для освещения детских комнат рекомендуется использовать лампы и светильники прошедшие проверку по стандарту ТМ-30-15.

Простые схемы цветомузыки на светодиодах и светодиодных лентах для сборки своими руками

Неисчерпаемый потенциал светодиодов в очередной раз раскрылся в конструировании новых и модернизации уже имеющихся цветомузыкальных приставок. 30 лет назад пиком моды считалась цветомузыка, собранная из разноцветных лампочек на 220 вольт, подключенных к кассетному магнитофону. Сейчас ситуация изменилась и функцию магнитофона теперь выполняет любое мультимедийное устройство, а вместо ламп накаливания устанавливают сверхъяркие светодиоды или светодиодные ленты.

Преимущества светодиодов перед лампочками в цветомузыкальных приставках неоспоримы:

  • широкая цветовая гамма и более насыщенный свет;
  • различные варианты исполнения (дискретные элементы, модули, RGB-ленты, линейки);
  • высокая скорость срабатывания;
  • низкое энергопотребление.

Как сделать цветомузыку с помощью простой электронной схемы и заставить светодиоды мигать от источника звуковой частоты? Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы рассмотрим на конкретных примерах.

Простейшая схема с одним светодиодом

Для начала следует разобраться с простой схемой цветомузыки, собранной на одном биполярном транзисторе, резисторе и светодиоде. Питание на неё можно подавать от источника постоянного тока напряжением от 6 до 12 вольт. Работает данная цветомузыка на одном транзисторе по принципу усилительного каскада с общим эмиттером. Возмущающее воздействие в виде сигнала с изменяющейся частотой и амплитудой поступает на базу VT1. Как только амплитуда колебаний превышает некоторое пороговое значение, транзистор открывается и светодиод вспыхивает.

Недостаток данной простейшей схемы состоит в том, что темп мигания светодиода полностью зависит от уровня звукового сигнала. Другими словами, полноценный цветомузыкальный эффект будет наблюдаться только на одном уровне громкости. Снижение громкости приведёт к редкому подмигиванию, а увеличение – к почти постоянному свечению.

Схема с одноцветной светодиодной лентой

Простейшая вышеприведенная цветомузыка на транзисторе может быть собрана с использованием светодиодной ленты в нагрузке. Для этого нужно увеличить напряжение питания до 12В, подобрать транзистор с наибольшим током коллектора превышающим ток нагрузки и пересчитать номинал резистора. Такая простейшая цветомузыка из светодиодной ленты прекрасно подойдёт начинающим радиолюбителям для сборки своими руками даже дома.

Простая трёхканальная схема

Избавиться от недостатков предыдущей схемы позволяет трёхканальный преобразователь звука. Самая простая схема цветомузыки с разделением звукового диапазона на три части показана на рисунке. Питается она постоянным напряжением 9В и может засветить один или два светодиода в каждом канале. Состоит схема из трёх независимых усилительных каскадов, собранных на транзисторах КТ315 (КТ3102), в нагрузку которых включены светодиоды разного цвета. В качестве элемента для предварительного усиления можно использовать небольшой сетевой трансформатор понижающего типа.

Входной сигнал подаётся на вторичную обмотку трансформатора, который выполняет две функции: гальванически развязывает два устройства и усиливает звук с линейного выхода. Далее сигнал поступает на три параллельно включенных фильтра, собранных на базе RC-цепей. Каждый из них работает в определённой полосе частот, которая зависит от номиналов резисторов и конденсаторов. Низкочастотный фильтр пропускает звуковые колебания частотой до 300 Гц, о чем свидетельствует мигание красного светодиода. Через фильтр средних частот проходит звук в диапазоне 300-6000 Гц, что проявляется в мерцании синего светодиода. Высокочастотный фильтр пропускает сигнал, частота которого больше 6000 Гц, что соответствует зелёному светодиоду. Каждый фильтр оснащен подстроечным резистором. С их помощью можно задать равномерное свечение всех светодиодов, независимо от музыкального жанра. На выходе схемы все три отфильтрованных сигнала усиливаются транзисторами.

Читайте также:  Электричество от печки своими руками

Если питание схемы осуществляется от низковольтного источника постоянного тока, то трансформатор можно смело заменить однокаскадным транзисторным усилителем. Во-первых, гальваническая развязка теряет практический смысл. Во-вторых, трансформатор в несколько раз проигрывает схеме, показанной на рисунке, по массе, размерам и себестоимости. Схема простого усилителя звуковой частоты состоит из транзистора КТ3102, двух конденсаторов, отсекающих постоянную составляющую, и резисторов, обеспечивающих транзистору режим с общим эмиттером. С помощью подстроечного резистора можно добиться общего усиления слабого входного сигнала.

В случае когда необходимо усилить сигнал с микрофона, ко входу предыдущей схемы подключают электретный микрофон, подавая на него потенциал от источника питания. Схема двухкаскадного предварительного усилителя показана на рисунке. В данном случае подстроечный резистор стоит на выходе первого усилительного каскада, что даёт больше возможностей для регулировки чувствительности. Конденсаторы С1-С3 пропускают полезную составляющую и отсекают постоянный ток. Для реализации подойдёт любой электретный микрофон, для нормальной работы которого достаточно смещения 1,5В.

Цветомузыка с RGB светодиодной лентой

Следующая схема цветомузыкальной приставки работает от 12 вольт и может устанавливаться в автомобиле. Она совместила в себе основные функции ранее рассмотренных схемотехнических решений и способна работать в режиме цветомузыки и светильника.

Первый режим достигается за счёт бесконтактного управления RGB-лентой при помощи микрофона, а второй – за счёт одновременного свечения красного, зелёного и синего светодиодов на полную мощность. Выбор режима осуществляется при помощи переключателя, размещенного на плате. Теперь остановимся подробно на том, как сделать цветомузыку, которая отлично подойдет даже для установки в авто, и какие детали для этого потребуются.

Структурная схема

Чтобы понять, как работает данная цветомузыкальная приставка, сначала рассмотрим её структурную схему. Она поможет проследить полный путь прохождения сигнала. Источником электрического сигнала является микрофон, который преобразует звуковые колебания от фонограммы. Т.к. этот сигнал чрезмерно мал, его необходимо усилить при помощи транзистора или операционного усилителя. Далее следует автоматический регулятор уровня (АРУ), который удерживает колебания звука в разумных пределах и подготавливает его к дальнейшей обработке. Фильтры разделяют сигнал на три составляющие, каждая из которых работает только в одном частотном диапазоне. В конце остаётся только усилить подготовленный токовый сигнал, для чего используют транзисторы, работающие в ключевом режиме.

Принципиальная схема

На основании структурных блоков, можно перейти к рассмотрению принципиальной схемы. Её общий вид представлен на рисунке. Для ограничения тока потребления и стабилизации питающего напряжения установлен резистор R12 и конденсатор С9. Для задания напряжения смещения микрофона установлены R1, R2, C1. Конденсатор Cfc подбирается индивидуально к конкретной модели микрофона в процессе наладки. Он нужен для того, чтобы немного приглушить сигнал той частоты, которая превалирует в работе микрофона. Обычно снижают влияние высокочастотной составляющей.

Нестабильное напряжение автомобильной сети может оказывать влияние на работу цветомузыки. Поэтому наиболее правильно подключать самодельные электронные устройства через стабилизатор на 12В.

Звуковые колебания в микрофоне преобразуются в электрический сигнал и через С2 поступают на прямой вход операционного усилителя DA1.1. с его выхода сигнал следует на вход операционного усилителя DA1.2, снабженного цепью обратной связи. Сопротивления резисторов R5, R6 и R10, R11 задают коэффициент усиления DA1.1, DA1.2 равный 11. Элементы цепи ОС: VD1, VD2, C4, C5, R8, R9 и VT1 вместе с DA1.2 входят в состав АРУ. В момент возникновения на выходе DA1.2 сигнала слишком большой амплитуды транзистор VT1 открывается и через С4 замыкает входной сигнал на общий провод. Это приводит к мгновенному снижению напряжения на выходе.

Читайте также:  Фото натяжных потолков в ванной

Затем стабилизированный переменный ток звуковой частоты проходит через отсекающий конденсатор С8, после чего разделяется на три RC-фильтра: R13, C10 (НЧ), R14, C11, C12 (СЧ), R15, C13 (ВЧ). Чтобы цветомузыка на светодиодах светила достаточно ярко, нужно усилить выходной ток до соответствующего значения. Для ленты с потреблением до 0,5А на каждый канал подойдут транзисторы средней мощности типа КТ817 или импортный BD139 без монтажа на радиатор. Если собираемая светомузыка своими руками предполагает нагрузку около 1А, то транзисторам потребуется принудительное охлаждение.

В коллекторах каждого выходного транзистора (параллельно выходу) стоят диоды D6-D8, катоды которых объединены между собой и выведены на переключатель SA1 (White light). Второй контакт переключателя соединён с общим проводом (GND). Пока SA1 разомкнут, схема работает в режиме цветомузыки. При замыкании контактов переключателя все светодиоды в ленте зажигаются на полную яркость, образуя в сумме белый поток света.

Печатная плата и детали сборки

Для изготовления печатной платы понадобится односторонний текстолит размером 50 на 90 мм и готовый файл .lay, который можно скачать здесь. Для наглядности плата показана со стороны радиоэлементов. Перед выводом на печать необходимо задать её зеркальное отображение. В слое М1 показаны 3 перемычки, размещаемые на стороне деталей. Для сборки цветомузыки из светодиодной ленты своими руками понадобятся доступные и недорогие компоненты. Микрофон электретного типа, подойдет в защитном корпусе со старой аудио аппаратуры. Светомузыка собрана на микросхеме TL072 в DIP8 корпусе. Конденсаторы, независимо от типа, должны иметь запас по напряжению и быть рассчитаны на 16В или 25В. При необходимости конструкция платы позволяет установить выходные транзисторы на небольшие радиаторы. С краю запаивают клеммную колодку на 6 позиций для подачи питания, подключения RGB светодиодной ленты и переключателя. Полный перечень элементов приведен в таблице. В заключение хочется отметить, что количество выходных каналов в самодельной цветомузыкальной приставке можно увеличивать сколь угодно раз. Для этого нужно разбить весь частотный диапазон на большее количество секторов и пересчитать полосу пропускания каждого RC-фильтра. К выходам дополнительных усилителей подключить светодиоды промежуточных цветов: фиолетового, бирюзового, оранжевого. От такого усовершенствования цветомузыка своими руками станет только краше.

Цветомузыка. Что может быть проще?

Вы начинающий радиолюбитель и вам нечем заняться? Хотите что-нибудь спаять, но не можете определиться с выбором? Делаем цветомузыку! Устроим дома дискотеку и будем зажигать, но сначала включим паяльник и немного попаяем. Не хотим дискотеку, просто поставим возле компьютера в уголок, пусть моргает под музыку.

Цветомузыкальная установка позволяет получать цветные вспышки в такт с исполняемой мелодией. Для начала возьмём транзистор, светодиод, резистор и источник питания 9В. Подключим источник звука и подадим напряжение


1-ая схема

И что мы видим? Светодиод мигает в ритм музыки. Но мигает надоедливо под уровень громкости. И тут встаёт вопрос разделения звуковой частоты. В этом нам помогут фильтры из конденсаторов и резисторов. Они пропускают только определённую частоту, и получается, что светодиод будет мигать только под определённые звуки


2-ая схема

На схеме приведён пример простой цветомузыки. Но это только небольшая приставка, с незначительной яркостью. Она состоит из трёх каналов и предусилителя. Звук подаётся с линейного выхода или усилителя НЧ на трансформатор, который нужен для усиления звука и гальванической развязки. Подойдёт сетевой малогабаритный, на вторичную обмотку которого подаётся звуковой сигнал. Можно обойтись без него, если входного сигнала достаточно для вспыхивания светодиодов. Резисторами R4-R6 регулируется вспыхивание светодиодов. Далее идут фильтры, каждый из которых настроен на свою полосу пропускания частот. Низкочастотный – пропускает сигналы частотой до 300Гц (красный светодиод), среднечастотный – 300-6000Гц (синий), высокочастотный – от 6000Гц (зелёный). Транзисторы подойдут практически любые, структуры NPN с коэффициентом передачи тока не менее 50, лучше, если больше, например те же КТ3102 или КТ315.

Читайте также:  Установка сушильной машины своими руками

Вы собрали надёжное, прекрасно работающее цветомузыкальное устройство, но чего-то не хватает? Модернизируем его!

Начнём с самого главного. Увеличим яркость. Для этого будем использовать лампы накаливания на 12 вольт. В схему добавляем тиристоры и питаем устройство от трансформатора. Тиристор – управляемый диод, позволяющий управлять мощной нагрузкой с помощью слабых сигналов. При прохождении через него постоянного тока он остаётся в открытом состоянии даже без управляющего сигнала, при переменном токе принцип работы похож на транзисторный. Имеет анод, катод – как у диода, и дополнительный управляющий электрод. Способен выдерживать приличную нагрузку, поэтому используется в схеме для управления лампами накаливания.


3-яя схема

Звуковой сигнал подаётся от усилителя НЧ, мощностью 1-2 Ватта. Тиристоры практически любые, рассчитанные под ток ламп, лампы – автомобильные на 12 вольт. Трансформатор должен отдавать достаточный ток (1.5-5 ампер) в зависимости от ламп.

Если у вас есть опыт работы с сетевым напряжением, то лучшим вариантом будет использование осветительных ламп на 220 вольт. Сетевой трансформатор в таком случае не понадобится, а вот звуковой лучше оставить для защиты источника звука. При этом всё должно быть тщательно изолировано и размещено в надёжном корпусе.

Теперь делаем фоновую подсветку. Она будет работать обратно основным каналам: при отсутствии звука светодиод горит постоянно, подаётся звук – светодиод гаснет. Можно сделать один общий фоновый канал или несколько с отдельными звуковыми фильтрами и подключить по предыдущей схеме.


4-ая схема

В схеме добавлен резистор (R2) для постоянного открытия транзистора. Поэтому ток через светодиод проходит свободно, но звуковой сигнал способен закрывать транзистор, светодиод гаснет.

Заменим трансформатор на транзисторный усилитель.


5-ая схема

Избавляемся от звукового провода при помощи микрофона. Добавим его в предыдущую схему. Теперь цветомузыка будет реагировать на все окружающие звуки, в том числе и на разговор.


6-ая схема

В схеме приведён пример двухкаскадного микрофонного усилителя. Резистор R1 необходим для питания микрофона, R2 R6 устанавливают смещение, R4 – настройка чувствительности. Конденсаторы C1-C3 пропускают переменный звуковой сигнал и не дают пройти постоянному току. Микрофон – любой электретный. Если схему использовать просто как предусилитель, то R1 и микрофон убираются, звуковой сигнал подаётся на C1 и минус питания. Номиналы деталей не критичны, особая точность здесь не важна. Главное не делать ошибок и у вас всё получится.

Невероятно эффектная цветомузыка на Arduino и светодиодах

С наступающим! Приближается Новый год, а значит, пора срочно создавать настроение! Ну и как всегда в это время года рождаются десятки электронных схем различных цветомузыкальных установок.

Чего только самобытные мастера не придумают. От трехцветных моргалок до лазерных многолучевых установок с управлением по MIDI интерфейсу.

Как большой поклонник, так называемых адресных светодиодов, хочу показать вам очень простую и удивительную цветомузыку. Я вообще такой ни разу не видел. Пока не собрал за один вечер. Итак, визуализатор звука!

Инструкция

Схема очень простая!

Вам понадобятся Arduino Nano, или Uno. Или какая там у вас есть? Два потенциометра, пять резисторов, пару конденсаторов и линейка (лента) из 180 светодиодов WS2812b. Всё! Светодиодов в линейке может быть 60, 120 или 180.

В визуализаторе с помощью алгоритма быстрого преобразования Фурье выделяются 8 частот (порог чувствительности на каждую частоту свой, снижается от 1 к 8), преобразуются в цвет и выводятся на линейку светодиодов по одному из восьми алгоритмов. Скетч писал Майкл Крампас, парни из Чип и Дипа добавили функционал, а библиотека для светодиодов и быстрого преобразования Фурье (FFT) написана в Адафрут для проекта Piccolo. Библиотека FFT для 128 точек, адаптированная для AVR микроконтроллеров написана на ассемблере.

Сам скетч и библиотеку FFT нужно скачать здесь и здесь.

Читайте также:  Шумоизоляция (звукоизоляция) потолка в ванной

Не теряйте время на разбор алгоритмов, просто соберите, залейте скетч и наслаждайтесь шоу.
Это всего лишь развлечение!

В момент первого включения нужно сделать пару настроек:

Яркость: удерживайте кнопку color при включении питания. На первых 8 светодиодах будет отображаться радуга светодиодов. С помощью ручки param измените яркость. По завершении нажмите кнопку color еще раз, и ваша конфигурация будет сохранена в памяти.

Длина светодиодной полосы: удерживайте кнопку pattern при включении питания. Отобразится один, два или три красных светодиода. Используйте ручку param, чтобы выбрать длину светодиодной полосы в зависимости от количества красных светодиодов:

1=60 светодиодов
2=120 светодиодов
3=180 светодиодов

По завершении нажмите кнопку pattern еще раз, и ваша конфигурация будет сохранена в памяти.

Алгоритмы

Танцы плюс: пики звуковых сигналов испускаются из центра полосы и исчезают по мере приближения к концам. Скорость пика пропорциональна величине звукового сигнала этого пика.

Танцы минус: то же, что и Dance Party, но пики сигналов испускаются с одного конца.
Импульс: пики сигналов отображаются как яркие импульсы, которые поступают из центра полосы. Ширина импульса зависит от уровня сигнала.

Световая полоса: в пиках освещается вся полоса.

Цветные полоски: пики сигналов отображаются как цветные полосы, которые исчезают.

Цветные полоски 2: подобно цветные полоски, но каждая полоска сжимается и исчезает.

Вспышки: пики сигналов отображаются в виде светодиодной вспышки в случайном месте. Начальный цвет белый, а затем исчезает через другой цвет.

Светлячки: пики сигналов отображаются как одиночные светодиоды в случайном месте, и они перемещаются влево или вправо и исчезают. Их скорость зависит от величины сигнала.

Цветовые схемы

Случайная двухцветная схема: выбраны два случайных цвета и только они используются для отображения пиков сигнала. Со временем будут выбраны новые цвета. Используйте param, чтобы настроить скорость изменения цветовой схемы. Если ручка потенциометра «параметры» в верхнем положении, цвета будут меняться часто и каждый пик сигнала будет иметь новый цвет. Рекомендую установить ручку в средину.

Радуга: все пики сигналов отображаются как один и тот же цвет (с небольшим количеством случайных вариаций) и этот цвет меняется как радуга с течением времени. Скорость изменения цвета устанавливается потенциометром param.

Цветные частоты: в этом режиме каждый пик сигнала окрашивается в зависимости от частотной полосы где он находится. Самая низкая полоса красного цвета, и дальше вверх по спектру. Есть 8 полос частот: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, белый. Этот цветовой режим наиболее интересен, когда частотная характеристика настроена на все полосы частот.

Диапазон частот: вы можете управлять тем диапазоном частот, на который откликается цветомузыка. Чтобы установить диапазон нажмите и удерживайте обе кнопки. Используйте ручку param, чтобы выбрать, сколько из восьми частотных диапазонов будет показываться. Если вы хотите выделить бас и ритм музыки, установите частотную характеристику только на самые низкие 2 или 3 полосы. Если вы хотите показать все частоты в музыке (например, вокал и более высокие инструменты), выберите все полосы частот.

Это видеоинструкция по настройке и она же демонстрация визуализатора в работе. Там в конце две музыкальные композиции с разными алгоритмами.

Цветомузыка своими руками.
Различные схемы цветомузыкальных автоматов.

Принцип работы цветомузыкального автомата.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия – прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности – это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу – цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум – одного, а максимум – группы операторов-осветителей.

Читайте также:  Электроконвекторы отопления: видео-инструкция по монтажу своими руками, особенности отопительных изделий для частного дома, как выбрать, цена, фото

Если блок управления контролируется непосредственно музыкой, работает по какой – либо заданной программе, то цветомузыкальная установка считается – автоматической.
Именно такого рода “цветомузыки” обычно собирают своими руками начинающие конструкторы – радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема “цветомузыки” на тиристорах КУ202Н.

Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую “светомузыку”. Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний – зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое – звенящее и пищащее.

Недостаток один – необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти “на полную” врубать свою “Электронику” для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот – низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема “цветомузыки” на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте – на три канала. По первому каналу идет самая низкочастотная составляющая сигнала – фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны – 1 мкФ, но как показала практика – их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту – примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны – 0,015 мкФ, но их емкость следует увеличить, до 0,33 – 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны – 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) – от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае – это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы – до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Читайте также:  Труба для электропроводки: гладкие ПНД, пластиковые, гофрированные трубы для проводки электрики, кабеля

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум – 2А. Если количество ламп на каждый канал увеличить – соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум – 250 мА(а лучше – больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, – собирают активный фильтр. Далее – проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем – реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после “чистовой” сборки на монтажной плате, если работа проведена без ошибок и с применением “испытанных” деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом – поможет избавиться от навесных проводов-перемычек.

Вместо тиристоров можно использовать и более”продвинутые” полупроводниковые приборы, например – оптосимисторы, не меняя при этом особенно схему. Это дает отличную гальваническую развязку между высоко и низковольтными цепями – такой элемент, как разделительный входной трансформатор становится необязательным. Вместо него, лучше поставить дополнительный предварительный усилительный каскад(на КТ315), что в свою очередь позволит снизить требования к транзисторам(по коэффициенту усиления). Необходимость в диодном мосте для выпрямления переменного напряжения, отпадает само собой.
Придется подобрать величину сопротивления резисторов ограничивающих ток входа оптосимисторов(R12, R18, R25). Например, для оптосимисторов ТСО132-10 при напряжении 12в, потребуются резисторы на 200 – 240 Ом.

Реально собранная светомузыка в процессе настройки
(19.10. 2015).

Она же – в корпусе, без крышки.(21. 10. 2015).

В работе.(27. 12. 2015).

В темноте.(27. 12. 2015).

Схема “бегущие огни”.

Автомат “бегущие огни” – еще одно популярное устройство. Его основным предназначением изначально было создание цветовых эффектов, для оформления диско – вечеринок Так что, хотя и с небольшой натяжкой, “бегущие огни” тоже можно отнести к разряду “цветомузык”.
Схема на логических элементах И-НЕ и триггерах, дает возможность регулировать частоту переключений(скорость “бегущего огня”) вручную.

Схема выполнена на двух триггерах микросхемы D2(К155ТМ2) и дешифраторах управления на D1(К155ЛА3), а скорость переключения задаются частотой мультивибратора на микросхеме D3(К155ЛА3). Частота импульсов на выходе мультивибратора на D3 зависит от постоянной времени частотозадающей цепи R10-R11-С6. Скорость переключения ламп можно регулировать при помощи переменного резистора R10. Уменьшая его сопротивление можно увеличивать скорость переключения, увеличивая – снижать.

Питающий трансформатор Тр1 понижающий с напряжением на первичной обмотке 220в, вторичной 6-8 в, мощностью от 5 ватт. Напряжение 5 вольт для питания микросхем получается с помощью стабилизатора КРЕН5А, или его аналога. Транзисторы – КТ315Б, тиристоры – КУ202Н, конденсаторы и резисторы – любого типа.

Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт “Электрика это просто”.

Как собрать цветомузыку?

Цветомузыка своими руками – что может быть приятней и интересней для радиолюбителя, ведь собрать ее несложно, имея хорошую схему.

В современной радиотехнике существует огромное разнообразие радиоэлементов и светодиодов, преимущество которых трудно подвергнуть сомнению. Большой диапазон цветов, яркий и насыщенный свет, высокая скорость срабатывания различных элементов, низкое потребление энергии. Этот список достоинств можно продолжать бесконечно.

Принцип работы цветомузыки: светодиоды, собранные по схеме, моргают от имеющегося источника звука (это может быть плеер или магнитола и колонки) с определенной частотой.

Преимущества использования светодиодов перед используемыми ранее в ЦМУ:

  • световая насыщенность света и обширный цветовой диапазон;
  • хорошая скорость;
  • малая энергоемкость.
  1. Простейшие схемы
  2. Этапы изготовления
  3. Краткое описание радиоэлементов
  4. Возможность сборки цветомузыкальной приставки для автомобиля
  5. Вывод

Простейшие схемы

Простая цветомузыка, которую можно собрать, имеет один светодиод, питается от источника постоянного тока напряжением 6–12 В.

Читайте также:  Сумасшедший дизайн роскошного дивана

Простейшая схема на один светодиод

Можно собрать вышеприведенную схему, используя светодиодную ленту и подобрав необходимый транзистор. Недостатком является то, что существует зависимость частоты мигания светодиодов от уровня звука. Другими словами, полноценный эффект можно наблюдать только при одном уровне звучания. Если снизить громкость, то будет редкое мигание, а при повышении громкости останется постоянное свечение.

Убрать этот недостаток можно при помощи трехканального преобразователя звука. Ниже приведена простейшая схема, собрать ее своими руками на транзисторах несложно.

Схема цветомузыки с трехканальным преобразователем звука

Для данной схемы необходим источник питания на 9 вольт, который позволит светиться светодиодам в каналах. Чтобы собрать три усилительных каскада, понадобятся транзисторы КТ315 (аналог КТ3102). В качестве нагрузки используются разноцветные светодиоды. Для усиления использован понижающий трансформатор. Резисторы выполняют функцию регулировки вспышек светодиодов. В схеме стоят фильтры для пропускания частот.

Можно улучшить схему. Для этого надо добавить яркость лампочками накаливания на 12 В. Понадобятся тиристоры управления. Все устройство необходимо запитать от трансформатора. По такой наипростейшей схеме можно уже работать. Цветомузыка на тиристорах может быть собрана даже начинающим радиотехником.

Схема цветомузыки с тиристорным управлением

Как сделать цветомузыку на светодиодах своими руками? Первое, что необходимо сделать – это подобрать электрическую схему.

Ниже приведена схема светомузыки с RGB-лентой. Для подобной установки необходим источник питания на 12 вольт. Она может работать в двух режимах: как светильник и как цветомузыка. Режим выбирается переключателем, установленным на плате.

Электрическая схема со светодиодной лентой для ЦМУ

Этапы изготовления

Необходимо сделать печатную плату. Для этого нужно взять фольгированный стеклотекстолит размерами 50 х 90 мм и толщиной 0,5 мм. Процесс изготовления платы состоит из нескольких этапов:

  • подготовка фольгированного текстолита;
  • сверление отверстий под детали;
  • нанесение дорожек;
  • травление.

Пример макетного образца печатной платы

Плата готова, комплектующие закуплены. Теперь начинается самый ответственный момент – распайка радиоэлементов. От того, как аккуратно они будут установлены и запаяны, будет зависеть окончательный результат.

Перечень необходимых радиоэлементов

Собираем нашу печатную плату с напаянными на ней компонентами вот в такой доступный плафон.

Цветомузыкальная приставка, собранная своими руками

Краткое описание радиоэлементов

Радиоэлементы для электрической схемы вполне доступны, приобрести их в ближайшем магазине электротоваров не составит труда.

Для цветомузыкального сопровождения подойдут проволочные резисторы мощностью 0,25–0,125 Вт. Величину сопротивления всегда можно определить по цветным полоскам на корпусе, зная порядок их нанесения. Подстроечные резисторы бывают как отечественные, так и импортные.

Конденсаторы, выпускаемые промышленностью, делятся на оксидные и электролитические. Подобрать нужные не составит труда, проделав элементарные расчеты. Некоторые оксидные конденсаторы могут иметь полярность, которую необходимо соблюдать при монтаже.

Диодный мост можно взять уже готовый, но если его нет, то выпрямительный мост несложно собрать, используя диоды серии КД или 1N4007. Светодиоды берутся обычные, с разноцветным свечением. Использование cветодиодных RGB-лент – перспективное направление в радиоэлектронике.

Светодиодная RGB-лента

Возможность сборки цветомузыкальной приставки для автомобиля

Если получилось порадовать цветомузыкой из светодиодной ленты, сделанной своими руками, то подобную установку со встроенной магнитолой можно изготовить для автомобиля. Ее легко собрать и быстро настроить. Предлагается разместить приставку в пластиковом корпусе, который можно купить в отделе электрорадиотехники. Установка надежно защищена от влаги и пыли. Ее несложно установить за приборной панелью автомобиля.

Также подобный корпус можно изготовить самостоятельно, используя оргстекло.

Подбираются пластины нужных габаритов, в первой из деталей делаются два отверстия (для питания), зашкуриваются все детали. Собираем все с помощью термопистолета.

Отличный световой эффект достигается, если использовать разноцветную (RGB) ленту.

Вывод

Известная поговорка «не боги горшки обжигают» остается актуальной и в наши дни. Разнообразный ассортимент электронных компонентов дает народным умельцам широкий простор для фантазии. Цветомузыка на светодиодах, сделанная своими руками, – это одно из проявлений безграничного творчества.

Цветомузыка самодельная из светодиодов

Цветомузыка самодельная в салоне собственного авто будет интересна всем любителям красивой дискотечной музыки. Сделать ее своими руками совершенно несложно.
Цветомузыка в домашних условиях может быть быстро и легко собрана, если знать некоторые нюансы схемы и ее правильной установки.

Читайте также:  Срок службы газовых труб: нормы периода эксплуатации наружных и внутренних газопроводов

Схемы цветомузыки в авто

Как сделать самодельную цветомузыку

Большое количество схем самодельной цветомузыки опубликовано бывает на форумах радиолюбителей. Одни из предназначены только для опытных, другие – для начинающих умельцев.
В принципе, все схемы построены по одному принципу, который и рекомендуется уяснить, чтобы сборка не представляла собой больше нечто неосуществимое и очень сложное.

Простая схема

Самодельная цветомузыка на светодиодах

Собрать по такой схеме цветомузыку способен даже школьник, ведь она состоит всего из одного транзистора. Название его КТ815Г.
Эту цветомузыку можно собрать на диодах, позаимствованных от простого карманного фонарика.
Делается все следующим образом:

  • Светодиоды, которые мы сняли с карманного фонарика, разделяем пополам;
  • Находим подходящий короб, в котором будем собирать нашу схему. Идеально подойдет в данном случае вместо короба прямоугольная пластиковая коробка от использованного обувного крема;
  • Переключатель выносим. Он будет менять режим светомузыки на простое освещение.

Самодельная цветомузыкальная установка

Примечание. Светодиоды будут мигать под басы и чем больше громкость, тем ярче они светятся. Что касается каналов, то достаточно двух, не подключенных к динамику.

  • Источником питания в нашем случае будут выступать три пальчиковые батареи;
  • Остается только поставить самодельную цветомузыку в багажник и наслаждаться эффектом.

Сложные схемы

Самодельная простая цветомузыка и схема

Они позволят создать более профессиональные с точки зрения пользователя, схемы.

Первый вариант схемы

Собирается она на пяти диодах. Все они пятимиллиметровые и на 3 V, имеют прозрачные линзы. В качестве транзистора берется КТ815 или КТ972. Его задача усиливать и выполнять роль ключа.
Делается все так:

  • Подается питание от 2-х полторавольтовых батарей;
  • Входы для музыки соответственно два: Х1 и Х2;
  • На место LED3 устанавливаем красный диод, остальные оставшиеся пары будут синими и зелеными;

Примечание. В результате этого получаем очень удачную цветомузыкальную схему. Светодиоды очень эффектно светятся в такт музыки, схема потребляет мало тока, а низкие частоты воспроизводятся просто супер. Только надо быть начеку: от громкой музыки светодиоды могут не выдержать и перегореть.

Второй вариант схемы

Находим транзистор КТ817, провода, штекер от наушников и СД ленту.
Начали:

  • Транзистор спаиваем по следующей схеме;
  • Затем добавляется СД лента и все перемещается в багажное отделение автомобиля.

Светомузыка из гирлянд

Схемы простой самодельной цветомузыки

Вполне удачное решение, которое потребует применение лампочек из новогодних гирлянд:

  • Гирлянды(см.Цветомузыка из гирлянды своими руками) надо собрать вместе несколько штук и зафиксировать изолентой;
  • Сделать переходник для соединения с головным устройством и соединить провод.

Примечание. Схема в данном случае будет подразумевать восемь проводников витой пары, которые передают сигнал с контактов ГУ на блок управления цветомузыкой.

Цветомузыка из светодиодов

Оригинальная схема для изготовления красивой цветомузыки. В данном случае нужен корпус, который делается из оргстекла.
Приступим:

  • Подбираем две пластины размерами 5х15 см и две пластины квадратные 5х5 см;
  • В одной из деталей делается пару отверстий (для питания и наушников);
  • Матируем и шкурим все пластины;
  • Находим светодиоды, которые тоже матируем для лучшего эффекта;
  • Корпус собираем с помощью термопистолета, который идеально подходит для работ с оргстеклом;
  • Собираем теперь электрическую схему для цветомузыки по этой схеме:

Как сделать цветомузыку самому

  • Подключаем провод от наушников с соответствующим разъемом к автомагнитоле и наслаждаемся эффектом.

Корпус из оргстекла можно установить в салоне авто, где угодно. Все будет зависеть от индивидуальных предпочтений, длины провода и т.д.
В процессе работ надо обязательно учитывать следующее:

  • Выходное напряжение адаптера и номинальное напряжение каждого из диодов должно быть взаимосвязано. Другими словами, общее число диодов, задействованных в схеме, должно равняться отношению выходного напряжения адаптера.

Примечание. Как пример, если адаптер 12В, а напряжение на каждый диод дается в 3В, то общее количество светодиодов должно равняться 4-м.

  • Использовать желательно 3-х жильный провод, один из жил которого надо оставить незадействованным.
Читайте также:  Что такое лестничный марш определение. Определение согласно стандартам типов лестничных площадок и клеток

Схема с сигналом от динамика

Самодельные цветомузыкальные установки

Еще одна популярная схема создания цветомузыки.
Делаем следующее:

Примечание. При этом очень важно не замкнуть выход УЗП*. С этой целью распаиваем только один провод.

УЗП* — Усилитель звуковой платы

  • Устраивает переключатель так, чтобы он включал светодиоды по музыке;
  • Подбираем сопротивление по схеме ниже, где указан номинал для включения одного диода;

Как сделать цветомузыку в домашних условиях

Примечание. Если цветомузыка будет собираться из 4-х светодиодов, то значение R должно равняться 820 Ом.

Популярная разноцветная схема

Другая распространенная схема подразумевает возможность увеличения питания. Особенно это будет актуально в том случае, если используется цепочка из множества светодиодов.
Схема такая:

  • Частотных фильтров должно быть два. Они на входе пропускают ВЧ и НЧ;
  • Сигнал затем поступает на усилительные каскады, после чего же на светодиоды;
  • К динамику источника рекомендуется подключать входы 1 и 2.

Совет. Если есть желание сделать цветомузыку ярче, то нужно всего-то уменьшить номиналы резисторов до пары сотен, а транзисторы поменять на КТ817.

У данной схемы есть одно преимущество, которого нет ни у одной другой: возможность использования светодиодов любого цвета.
Так, при воспроизведении НЧ басов будет мигать красный светодиод, при воспроизведении СЧ и ВЧ – зеленые. Что касается установки яркости, то она регулируется вращалкой громкости звука: чем выше звук, тем ярче свечение.

Потолок авто в светодиодах

Звездное небо в авто своими руками

Если есть желание, то можно не только устроить в автомобиле то-то подобное дискотеке, а соорудить подсветку, которая бы или включалась отдельно или была связана с музыкальным воспроизведением. Данная операция тоже подразумевает использование светодиодов.
«Звездное небо» на потолке автомобиля будет смотреться чудесно. Такой тип освещения, оказывается, практикуется уже давно и даже не только в автомобилях, но и в собственных квартирах.
Использовать данную схему можно по-разному:

  • Разместить светодиоды равномерно, в произвольной форме или же наподобие определенной фигуры;
  • Использовать разные по мощности свечения лампочки, имитирующие свечение звездочек (яркие/не яркие);
  • Использовать разный фон потолка. К примеру, можно перетянуть его в черный цвет.

Инструкция по созданию:

  • Перетягиваем потолок автомобиля;
  • Собираем или приобретаем стабилизатор тока.

Примечание. Очень важно на данном этапе все сделать правильно. В противном случае, придется демонтировать собранный потолок, если перегорят диоды. Чтобы избежать этой ситуации, надо после сборки проконтролировать схему (узнать, сколько вольт и какой силы ток у данной схемы). В качестве тестового блока подойдет старый БП от компьютера.

  • Используем конденсатор большой емкости, чтобы сделать плавное гашение светодиодов. Подойдет, к примеру, КТ470;
  • Помещаем схему в спичечный коробок;
  • Проверяем работу, соединяя последовательно три светодиода и один резистор;
  • На потолке в отверстия вставляем светодиоды, которые фиксируются с обратной стороны клеем;
  • Крепим также выключатель и стабилизатор.

Схема звездного неба

Примечание. Светодиоды можно сгруппировать по 3 и соединить с резистором, а затем группы провести к стабилизатору параллельно.

Вот и все дела. Надеемся, что из приведенных схем читателю удастся что-либо подобрать для себя. Только надо не забывать позаботиться о том, чтобы не включать красивую цветомузыку во время движения автомобиля. Это сильно отвлекает от дороги и способно спровоцировать аварию.
В процессе работ своими руками будет полезен видео обзор по теме, фото – материалы, схемы и прочее. Инструкции, подобные приведенным выше, можно найти и в других статьях нашего сайта. Цена самостоятельного создания и установки цветомузыки считается самой низкой в мире автотюнинга, ведь расходные материалы тоже можно изготовить своими руками.

Добавить комментарий

Ваш адрес email не будет опубликован.