Трехфазное УЗО: назначение, критерии выбора и особенности установки

Трехфазное УЗО: назначение, критерии выбора и особенности установки

УЗО (Устройство Защитного Отключения) — это коммутационный аппарат предназначенный для защиты электрической цепи от токов утечки, то есть токов протекающих по нежелательным, в нормальных условиях эксплуатации, проводящим путям, что в свою очередь обеспечивает защиту от пожаров (возгорания электропроводки) и от поражения человека электрическим током.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

УЗО так же имеет другие варианты названий, например: дифференциальный выключатель, выключатель дифференциального тока, (сокращенно выключатель диф тока) и т.п.

Устройство и принцип работы УЗО

И так для наглядности представим простейшую схему подключения через УЗО лампочки:

Из схемы видно, что при нормальном режиме работы УЗО, когда его подвижные контакты замкнуты, ток I1 величиной, к примеру, 5 Ампер от фазного провода проходит через магнитопровод УЗО, затем через лампочку, и возвращается в сеть по нулевому проводнику, так же через магнитопровод УЗО, при этом величина тока I2 равна величине тока I1 и составляет 5 Ампер.

Согласно закону электромагнитной индукции ток I1 проходя через магнитопровод УЗО создает в нем магнитный поток Ф1 условной величиной равной 5 единиц, в свою очередь ток I2 так же создает в магнитопроводе магнитный поток Ф2 такой же величины равной 5 единиц, но так как направление тока I2 противоположно направлению тока I1, то и создаваемый им магнитный поток Ф2 так же противоположен магнитному потоку Ф1, т.е. магнитные потоки Ф1 и Ф2 направлены встречно по отношению друг к другу и соответственно, при равных значениях входящего и выходящего токов, уравновешивают друг друга, в результате чего суммарный магнитный поток в магнитопроводе равен нулю:

Так как суммарный магнитный поток в магнитопроводе отсутствует (равен нулю), во вторичной обмотке ток не индуктируется. Подвижные контакты замкнуты, электрическая цепь включена и находится в нормальном режиме работы.

Теперь представим, что одного из проводов электрической цепи коснулся человек. При этом часть электрического ток начинает протекать через тело человека создавая непосредственную угрозу для его жизни и здоровья:

В такой ситуации часть тока электрической цепи поступающая от фазного провода не будет возвращаться в сеть, а проходя через тело человека будет уходить в землю следовательно ток I2 который будет возвращаться в сеть через магнитопровод УЗО по нулевому проводу будет меньше тока I1 поступающего в сеть, соответственно и величина магнитного потока Ф1 станет больше величины магнитного потока Ф2, в результате чего в магнитопроводе УЗО суммарный магнитный поток уже не будет равен нулю.

К примеру ток I1=6А, ток I2=5,5А, т.е. 0,5 Ампера протекает через тело человека в землю (т.е. 0,5 Ампера — ток утечки), тогда магнитный поток Ф1 будет равен 6 условных единиц, а магнитный поток Ф2 — 5,5 условных единиц тогда суммарный магнитный поток будет равен:

Фсумм= Ф1+ Ф2 =6+(-5,5)=0,5 усл. ед.

Возникший суммарный магнитный магнитный поток индуктирует электрический ток во вторичной обмотке который проходя через магнитоэлектрическое реле приводит его в работу, а оно, в свою очередь, размыкает подвижные контакты отключая электрическую цепь.

Проверка работоспособности УЗО осуществляется нажатием кнопки «ТЕСТ». Нажатие данной кнопки искусственно создает в УЗО утечку тока, что должно привести к отключению УЗО.

Схема подключения УЗО.

ВАЖНО! Так как в УЗО отсутствует защита от сверхтоков, при любой схеме его подключения должна быть предусмотрена так же установка автоматического выключателя, для защиты УЗО от токов перегрузки и короткого замыкания.

Подключение УЗО осуществляется по одной из следующих схем, в зависимости от типа сети:

Подключение УЗО без заземления:

Такая схема применяется, как правило, в зданиях со старой электропроводкой (двухпроводной), в который отсутствует заземляющий провод.

Подключение УЗО с заземлением:

Схема подключения УЗО в электросети системы ТN-C-S (когда нулевой проводник разделяется на нулевой рабочий и нулевой защитный):

Схема подключения УЗО в электросети системы ТN-S (когда нулевой рабочий и нулевой защитный проводники разделены):

ВАЖНО! В зоне действия УЗО нельзя объединять нулевой защитный (провод заземления) и нулевой рабочий проводники! Другими словами нельзя в схеме, после установленного УЗО, соединять между собой рабочий ноль (синий провод на схеме) и провод заземления (зеленый провод на схеме).

Ошибки в схемах подключения из-за которых выбивает УЗО.

Как было сказано выше УЗО срабатывает на токи утечки, т.е. если сработало УЗО — это значит, что произошло попадание человека под напряжение или по какой либо причине оказалась повреждена изоляция электропроводки или электрооборудования.

Но что если УЗО самопроизвольно срабатывает и при этом повреждений нигде нет, а подключенное электрооборудование исправно? Возможно все дело в одной из следующих ошибок в схеме сети защищаемой УЗО.

Одной из самых распространенных ошибок является объединение нулевого защитного и нулевого рабочего проводника в зоне действия УЗО:

В этом случае величина тока выходящего из сети через УЗО по фазному проводу будет больше чем величина тока возвращающегося в сеть по нулевому проводнику т.к. часть тока будет протекать мимо УЗО по проводнику заземления, что приведет к срабатыванию УЗО.

Так же, часто встречаются случаи использования в качестве нулевого рабочего проводника проводник заземления или стороннюю проводящую заземленную часть (например арматуру здания, систему отопления, водопроводную трубу). Такое, подключение как правило происходит при повреждении нулевого рабочего проводника:

Оба этих случая приводят к тому, что УЗО выбивает, т.к. ток выходящий из сети по фазному проводу ток через УЗО не возвращается обратно в сеть.

Как выбрать УЗО? Типы и характеристики УЗО.

Что бы правильно подобрать УЗО и исключить возможность ошибки воспользуйтесь нашим онлайн калькулятором расчета УЗО по мощности.

УЗО выбирается по его основным характеристикам. К ним относятся:

  1. Номинальный ток — максимальный ток при котором УЗО способно длительно работать не теряя свою работоспособность;
  2. Дифференциальный ток — минимальный ток утечки при котором УЗО произведет отключение электрической цепи;
  3. Номинальное напряжение — напряжение при котором УЗО способно длительно работать не теряя свою работоспособность
  4. Тип тока — постоянный (обозначается «-«) или переменный (обозначается «

»);

  • Условный ток короткого замыкания — ток который кратковременно может выдержать УЗО до момента пока не сработает защитная аппаратура (предохранитель или автоматический выключатель).
  • Выбор УЗО основывается на следующих критериях:

    — По номинальному напряжению и типу сети: Номинальное напряжение УЗО должно быть больше либо равно номинальному напряжению защищаемой им цепи:

    Uном. УЗО Uном. сети

    При однофазной сети требуется двухполюсное УЗО, при трехфазной сетичетырехполюсное.

    — По номинальному току: согласно пункта 7.1.76. ПУЭ использование УЗО в групповых линиях, не имеющих защиты от сверхтока, без дополнительного аппарата, обеспечивающего эту защиту не допускается, при этом необходима расчетная проверка УЗО в режимах сверхтока с учетом защитных характеристик вышестоящего аппарата, обеспечивающего защиту от сверхтока.

    Из сказанного выше следует, что перед УЗО должен стоять аппарат защиты (автоматический выключатель или дифференциальный автоматический выключатель) именно по току этого вышестоящего аппарата защиты необходимо выбирать номинальный ток УЗО исходя из условия, что номинальный ток УЗО должен быть больше либо равен номинальному току установленного до него аппарата защиты:

    Iном. УЗО⩾ Iном. аппарата защиты

    При этом рекомендуется что бы номинальный ток УЗО был на ступень больше номинального тока вышестоящего аппарата защиты (например если перед УЗО установлен автомат на 25 Ампер УЗО рекомендуется ставить с номинальным током 32 Ампера)

    Справочно — стандартные значения номинальных токов УЗО: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 20А, 25А, 32А, 40А, 50А, 63А и т.д.,

    — По дифференциальному току:

    Дифференциальный ток — это одна из главных характеристик УЗО которая показывает при какой величине тока утечки УЗО отключит цепь.

    В соответствии с пунктом 7.1.83. ПУЭ: Суммарный ток утечки сети с учетом присоединяемых стационарных и переносных электроприемников в нормальном режиме работы не должен превосходить 1/3 номинального тока УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети — из расчета 10 мкА на 1 м длины фазного проводника. Т.е. дифференциальный ток сети можно рассчитать по следующей формуле:

    где: Iсети — ток сети (рассчитанный по формуле выше), в Амперах; Lпровода — общая длина проводки защищаемой электросети в метрах.

    Рассчитав Δ Iсети принимаем ближайшее большее стандартное значение дифференциального тока УЗО Δ IУЗО:

    Δ IУЗО Δ Iсети

    Стандартными величинами дифференциального тока УЗО являются: 6, 10, 30, 100, 300, 500мА

    Дифференциальные токи: 100, 300 и 500мА применяются для защиты от пожаров, а токи : 6, 10, 30мА — для защиты от поражения человека электрическим током. При этом токи 6 и 10мА применяются, как правило, для защиты отдельных потребителей и помещений с повышенной опасностью, а дифференциальный ток 30мА подходит для общей защиты электросети.

    В случае если УЗО необходимо для защиты от поражения электрическим током, а по произведенному расчету ток утечки составил более 30мА необходимо предусмотреть установку нескольких УЗО на разные группы линий, например одно УЗО для защиты розеток в комнатах, а второе для защиты розеток в кухне, снизив тем самым мощность проходящую через каждое УЗО и как следствие снизив ток утечки сети, т.е. в таком случае расчет необходимо будет производить для двух или более УЗО которые будут установлены на разные линии.

    — По типу УЗО:

    УЗО бывают двух типов: электромеханическое и электронное. Принцип работы электромеханического УЗО мы рассматривали выше, его основным рабочим органом является дифференциальный трансформатор (магнитопровод с обмоткой) который сравнивает величины уходящего в сеть тока и тока возвращающегося из сети, а в электронном эту функцию выполняет электронная плата для работы которой необходимо напряжение.

    Представим ситуацию: по какой-то причине «пропал» ноль (например отгорел нулевой проводник), при этом если в сети установлено электронное УЗО его электронная плата обесточится и в случае, если человек коснувшись фазного провода попадет под напряжение данное УЗО не сработает, электромеханическое же УЗО сохранит свою работоспособность даже в случае отсутствия напряжения и отключит электрическую цепь, поэтому предпочтительнее использовать именно электромеханическое УЗО.

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Схема подключения УЗО в трехфазной сети с заземлением – 3 основных правила

    В статье: 2 обязательные причины установки УЗО в частном доме. Критерии выбора трехфазного УЗО. Ответы на часто задаваемые вопросы по схеме подключения УЗО в трехфазной цепи. +Подключение УЗО в 3 этапа, для начинающего. ТЕСТ для само контроля: Готов ли я приступить к подключению? И многое другое…

    Готов ли я приступить к подключению?

    2) Каким цветом отмечена клемма для подключения нулевого провода?

    • Синим
    • Зеленым

    3) Обязательно ли ставить УЗО в частном доме?

    • Да
    • Нет

    4) К какому проводнику подключена заземляющая жила?

    • К нулевому рабочему
    • К нулевому защитному

    Нерегулируемые приборы реагируют с превышением значения дифференциального тока 5 мА. Для каждой фазы на приборе клемма отмечается конкретным цветом, синий соответствует нулевому рабочему проводнику. Заземляющая жила подключается к защитному нулевому проводнику. Соединение с ОЗУ невозможно, т.к. прибор включает только 8 клемм для основных проводников.

    Все устройства выпускаются с отключением при превышении в сети значения 5 мА. Регламенту ПЭУ определяет синий цвет для нулевого рабочего проводника. Его часто путают с защитным нулевым проводником, который предназначен для подключения заземляющей жилы.

    Для защиты человека от фатального поражения током требуется принудительное отключение питания при дифференциальном значении до 6 мА. С учетом этого показателя ОЗУ срабатывают с превышением 5 мА. Заземляющий компонент предназначен для отвода токов, возникших в результате короткого замыкания, не взаимосвязан с основными фазами и подключается к защитному нулевому проводнику.

    2 обязательные причины установки УЗО в частном доме

    Защитное устройство единственный прибор, обеспечивающий отключение от сети при утечке тока. В обязательном порядке устанавливается в частном жилом помещении:

    • Технический кодекс установившейся практики (ТКП) требует установки для эксплуатации трехфазной сети;
    • Правила устройства электроустановок (ПЭУ) требуют монтажа, если автомат не обеспечивает аварийное отключение дома за 0.4 с.;

    Но это только регламент. Для чего еще ставят УЗО в доме?

    Назначение и принцип действия

    Устройство защитного отключения (УЗО) – компонент для упреждающего отключения жилого дома от электрической цепи во время возникновения аварийной ситуации. Механизм работы основан на контроле поступающего и выходного тока (дифференциальный ток) и срабатывает при регистрации разных значений. Результатом срабатывания УЗО становится обесточивание жилого дома путем его размыкания от электрической цепи.

    Пример работы устройства показан на рисунке. От сети на оборудование поступает ток (I1), Человек касается токопроводящего элемента оборудования и создает утечку, остаточный ток (I2) идет от оборудования обратно на устройство. Регистрируемое значение утечки составит I1 – I2. При значении разницы более 5 мА устройство прекратит дальнейшее электропитание оборудования.

    Рис 2. Схема работы УЗО.

    В ряде случаев присутствует в сети в комплексе с автоматическим выключателем, служащим средством отключения участка от общей электрической цепи во время короткого замыкания или поступления сверхтоков.

    Для каждого типа УЗО определяется конкретное значение разницы токов. С его превышением устройство передает сигнал на реле для отключения участка.

    Критерии выбора трехфазного УЗО

    Устройство включает конкретные элементы, одинаковые у любой модели, но могут различаться другими. В них важно разбираться, чтобы выбрать прибор с эффективной работой. Поэтому важно знать, какой УЗО надо ставить на дом.

    Чем важна чувствительность?

    Главный параметр УЗО – его чувствительность, период времени, за который сработает размыкание сети. Оптимальным значением считается время 0.025 с. – за это время проходящий ток не успеет вызвать остановку сердца. Прибор включает дополнительный источник питания. От его наличия зависит способ размыкания цепи:

    • В устройстве отключения он служит также прибором отключения электропитания;
    • При его отсутствии отключение срабатывает на основе показателя дифференциала магнитного поля;

    Дополнительный источник питания повышает чувствительность и быстрее срабатывает размыкание цепи, но стоимость такого прибора выше.

    Что означает дифференциал тока?

    Также УЗО различаются наличием регулировки значения дифференциального тока, с его превышением устройство срабатывает. Нерегулируемые устройства имеют статичное значение дифференциального тока, обычно равное 5 мА. Этот показатель считается критичным для штатной работы и явно указывает на аварийную ситуацию в цепи.

    Сколько клемм на устройстве?

    Другой важный критерий – количество клемм. УЗО для трехфазной сети представлен четырехполюсным модулем и включают восемь клемм (4 пары для подключения входных и выводных кабелей). Шесть клемм для соединения рабочих фаз и две для нулевой. В магазинах электротоваров работают консультанты со знанием, которые всегда ответят по вопросам характеристик.

    На сколько ампер брать УЗО?

    Сверхтоки от сети и короткое замыкание выводит из строя любой прибор. Защитную функцию по размыканию цепи в этом случае выполняет автоматический выключатель. Чтобы УЗО штатно функционировало при любых токах, нужно выбирать модель, с числом ампер на порядок выше, чем у автомата.

    Важно! Нередко продавцы предлагают приобрести универсальный дифференциальный автомат для более практического использования. Несмотря на возможность подсоединения нескольких сетей, не стоит его покупать:

    • Это прибор более сложной схемы, характеризующийся низкой чувствительностью;
    • Его стоимость будет выше;
    • Эти типы устройств предназначены для крупных предприятий и для частных нужд не требуются;

    Это первое правило из тех, что следует придерживаться.

    ТОП-4 производителей УЗО

    Для покупки качественного устройства предлагается ознакомиться с рейтингом лучших производителей:

    • ABB. Швейцарский производитель электроприборов, устройства которого отличатся высоким качеством и длительным сроком службы;
    • Legrand. Французский производитель, выпускающий исключительно УЗО и дифавтоматы;
    • Schneider Electric. Еще одна компания из Франции по выпуску электрооборудования. В отличие от предыдущей, давно пришла на отечественный рынок и известна;
    • General Electric. Американская компания, известная многолетней историей на мировом рынке электротоваров. В России приборы производителя сложно найти в избытке из-за малых поставок. Это связано с разными характеристиками используемой странами сети электропитания.
    Модель ABB FH204 Legrand DX3 Schneider Electric EASY9 General Electric RCBO
    Цена, руб. 2600 4900 2650 6100

    Стоит помнить, безопасность эксплуатации трехфазной сети зависит от надежности приборов – это второе правило.

    Подготовка к подключению

    Перед монтажом требуется решить два важных вопроса, решение которых обеспечит практическую эксплуатацию УЗО без ложных отключений.

    4 схемы подключения к трехфазной сети

    Предусматривает защитное отключение для ряда приборов или всего участка в помещении. От выбранной схемы зависит распространенность защитного устройства на приборы:

    • Полное отключение всего помещения от электрической цепи. В этом случае один прибор обеспечивает максимальную защиту от поражения током, обесточивая всех выходные устройства.
    • Частичное отключение. Только некоторые приборы будут отключаться при выборе такой схемы соединения, что создаст определенные удобства для жильцов, т.к. не все помещение обесточивается;

    Первый вариант схемы используется во всех многоквартирных домах. Монтаж происходит рядом со счетчиком электроэнергии или в помещении на начальном отрезке электропроводки. При срабатывании ОЗУ весть дом обесточивается.

    Второй вариант предусматривает включение на отрезке перед приборами конкретной комнаты. В этом случае все приборы имеют последовательную схему подключения в разводке. При размыкании электрической цепи прекратится работа приборов в одной комнате, другие же продолжат штатную работу;

    Третий вариант аналогичен предыдущему и при реализации схемы предусматривает частичное отключение. В этом случае точкой монтажа будет служить начальный отрезок последовательного подключения в комбинированной разводке.

    И последний вариант схемы – подсоединение ОЗУ перед выходным устройством. Метод удобен, когда используется всего 1 розетка для подключения промышленного оборудования. Лучше выбрать портативное УЗО, всегда будет обеспечен доступ.

    Когда требуется заземление?

    Для устаревших российских сетей характерна система tn-c, не предусматривающая нулевой защитный проводник для подключения заземляющего компонента. В этом случае потребуется заземление самого дома или оборудование для обеспечения безопасного отвода токов. Регламент ПЭУ уточняет, что отсутствие заземления единственная причина, когда нельзя ставить 4х полюсное УЗО. На рисунках ниже показаны схемы заземления.

    Также заземляющая жила – это отдельный компонент электрической цепи типа tn-s и ее прямое подключение к УЗО не предусмотрено. На это указывает отсутствие дополнительной клеммы для подключения.

    Еще важно знать 3 нюанса об особенностях подключения

    • Заземляющая жила никогда не подключается к УЗО, а только к выходному кабелю;
    • Четырехполюсный прибор нельзя использовать для подключения в однофазной сети;
    • Подключение к трехфазной сети БЗ (без заземления) запрещено;

    Подключение УЗО в 3 этапа

    Принцип монтажа прост и доступен для человека, не обладающего знанием электромонтажных работ. Производитель к прибору всегда прилагает инструкцию по эксплуатации – паспорт оборудования, в котором указана схема для подключения.

    Поиск и подключение нулевой фазы

    Ниже на рисунке приведена схема подключения – аналогичные обозначения нанесены возле клемм. Нулевую фазу можно определить методом проб, взяв два провода и, подсоединив их концы к патрону лампочки, а другие концы к двум проводам. Подключение к нулю не приведет к загоранию лампы, в остальных случаях она будет загораться.

    Внимание! Подключение лампочки к обеим рабочим фазам допустимо только на короткое время

    Важно! Замыкать цепь с лампой и жилами можно только на короткое время, в противном случае сработает автоматический выключатель.

    Подсоединение рабочих фаз

    Когда ноль найден, выполняется его подключение к клеммам. Остальные три проводника рабочие фазы. Они могут подключаться к УЗО любым способом, это никак не повлияет на работу устройства.

    Когда подключение завершено, осталось проверить работу схемы, запустив тестер, предусмотренный в приборе.

    Параллельное подключение выходных устройств

    Подсоединение нескольких розеток к одному УЗО возможно только параллельной схемой подключения. Для этого необходимо разделять каждую жилу на несколько более тонких проводников. В иных случаях прибор не будет полноценно работать и срабатывать при возникновении утечки – это третье правило.

    Как правильно подключить УЗО

    Ответы на часто задаваемые вопросы

    • Где в доме устанавливать защитный прибор? Только в помещении, вдалеке от санузла и кухни.
    • Мне рекомендуют купить УЗО на радиорынке, там дешевле. Сколько они проработают? Покупка таких устройств небезопасна, т.к. сомнительные приборы не проходят сертификацию, и качество их работы никто не гарантирует.
    • Обычно подключают проводники к клеммам независимо от фазы, зачем ноль искать? Сложные устройства, тот же дифавтомат, включают дополнительные компоненты, для которых важно соблюдение фазности.
    • Можно ли подсоединять несколько розеток к одному УЗО? Да, только параллельным соединением.
    • А как повлияет на работу устройства несколько подключенных розеток? Никак. Время срабатывания одинаково.

    Трёхфазная система электроснабжения

    Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.

    Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями.

    В трехфазной системе переменного тока каждая синусоидальная ЭДС находится в собственной фазе, участвуя в непрерывном периодическом процессе электризации сети, поэтому данные ЭДС иногда именуют просто «фазами», как и передающие данные ЭДС проводники: первая фаза, вторая фаза, третья фаза. Фазы сдвинуты друг относительно друга на 120 градусов, а соответствующие проводники принято обозначать латинскими буквами L1, L2, L3 или A, B, C.

    Такая система очень экономична, когда речь идет о передаче электрической энергии по проводам на большие расстояния. Трехфазные трансформаторы менее материалоемки.

    Силовые кабели требуют меньше проводящего металла (как правило используется медь), поскольку токи в фазных проводниках, по сравнению с однофазными, имеют меньшие действующие величины, если сравнивать с однофазными цепями аналогичной передаваемой мощности.

    Трехфазная система очень уравновешена, и оказывает равномерную механическую нагрузку на энергогенерирующую установку (генератор электростанции), чем продлевает срок ее службы.

    При помощи трехфазных токов, пропускаемых через обмотки электрических потребителей — различных установок и двигателей, легко получить вращающееся вихревое магнитное поле, необходимое для работы двигателей и других электроприборов.

    Синхронные и асинхронные трехфазные двигатели переменного тока имеют простое устройство, и гораздо экономичнее однофазных и двухфазных, а тем более — классических двигателей постоянного тока.

    С трехфазной сетью в одной установке можно получить сразу два рабочих напряжения — линейное и фазное, что позволяет иметь два уровня мощности в зависимости от схемы соединения обмоток – «треугольник» (англоязычный вариант «дельта») или «звезда».

    Что касается питания систем освещения, то присоединив три группы ламп – к различным фазам сети каждую, – можно значительно снизить мерцание и избавиться от вредного стробоскопического эффекта.

    Перечисленные преимущества как раз и обуславливают широкое применение именно трехфазной системы электроснабжения в большой мировой электроэнергетике сегодняшнего дня.

    Звезда

    Соединение по схеме «звезда» предполагает соединение концов фазных обмоток генератора в одну общую «нейтральную» точку (нейтраль – N), как и концов фазных выводов потребителя.

    Провода, соединяющие фазы потребителя с соответствующими фазами генератора называются в трехфазной сети линейными проводами. А провод, соединяющий между собой нейтрали генератора и потребителя — нейтральным проводом (обознаяается «N»).

    При наличии нейтрали, трехфазная сеть получается четырехпроводной, а если нейтраль отсутствует — трехпроводной. В условиях, когда сопротивления в трех фазах потребителя равны друг другу, то есть при условии что Za = Zb = Zc, нагрузка будет симметричной. Это идеальный режим работы для трехфазной сети.

    При наличии нейтрали, фазными называются напряжения между любым фазным проводом и нейтральным проводом. А напряжения между любыми двумя фазными проводами именуются линейными напряжениями.

    Если сеть имеет схему соединения «звезда», то в условиях симметричной нагрузки соотношения между фазными и линейными токами и напряжениями могут быть описаны следующими соотношениями:

    Видно, что линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов (пи/6 радиан):

    Мощность при соединении «звезда» в условиях симметричной нагрузки, с учетом известных фазных напряжений можно определить по формуле:

    О важности нейтрали и «перекосе фаз»

    Хотя при абсолютно симметричной нагрузке питание потребителей возможно по трем проводам линейными напряжениями даже в отсутствие нейтрали, тем не менее если нагрузки на фазах не строго симметричны, нейтраль всегда обязательна.

    Если же при несимметричной нагрузке нейтральный провод оборвется, либо его сопротивление по какой-то причине значительно возрастет, произойдет «перекос фаз», и тогда нагрузки на трех фазах могут оказаться под разными напряжениями — от нуля до линейного — в зависимости от распределения сопротивлений нагрузок по фазам в момент обрыва нейтрали.

    А ведь нагрузки номинально рассчитаны строго на фазные напряжения, значит что-то может выйти из строя. Особенно перекос фаз опасен для бытовой техники и электроники, поскольку из-за этого может не просто перегореть какой-нибудь прибор, но и случиться пожар.

    Проблема гармоник кратных третьей

    Наиболее часто бытовая и другая техника оснащается сегодня импульсными блоками питания, причем без встроенной схемы коррекции коэффициента мощности. Это значит, что моменты потребления ограничиваются тонкими импульсными пиками тока вблизи вершины сетевой синусоиды, когда конденсатор выходного фильтра, установленный после выпрямителя, резко и быстро подзаряжается.

    Когда таких потребителей к сети подключено много, возникает высокий ток третьей гармоники основной частоты питающего напряжения. Данные токи гармоник (кратных третьей) суммируются в нейтральном проводнике и способны перегрузить его, несмотря на то, что на каждой из фаз потребляемая мощность не превышает допустимой.

    Проблема особенно актуальна в офисных зданиях, где размещено на небольшом пространстве много разной оргтехники. Если бы во всех встроенных импульсных блоках питания имелись схемы коррекции коэффициента мощности, это бы решило проблему.

    Треугольник

    Соединение по схеме «треугольник» предполагает со стороны генератора соединение конца проводника первой фазы с началом проводника второй фазы, конца проводника второй фазы с началом проводника третьей фазы, конца проводника третьей фазы с началом проводника первой фазы — получается замкнутая фигура — треугольник.

    Линейные и фазные напряжения и токи при симметричной нагрузке, применительно к соединению «треугольник», соотносятся следующим образом:

    Мощность в трехфазной цепи при соединении треугольником, в условиях симметричной нагрузки, определяется следующим образом:

    В нижеприведенной таблице отражены стандарты фазных и линейных напряжений для разных стран:

    Проводники разных фаз трехфазной сети, а также нейтральные и защитные проводники традиционно маркируют собственными цветами.

    Так поступают для того, чтобы предотвратить поражение электрическим током и обеспечить удобство обслуживания сетей, облегчить их монтаж и ремонт, а также сделать стандартизированной маркировку фазировки оборудования: порядок чередования фаз порой очень важен, например для задания направления вращения асинхронного двигателя, режима работы управляемого трехфазного выпрямителя и т. д. В разных странах цветовая маркировка различна, в некоторых совпадает.

    Трехфазный переменный ток

    В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

    Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода ( φ =2 π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

    Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

    Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

    Как осуществляется подобный генератор легко понять из схемы на рис. 2.

    Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

    Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о ). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.

    В каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

    Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.

    В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

    Первый из этих способов, называется соединением звездой (рис. 3).

    Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

    Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1 ‘ , 2 ‘ , 3 ‘ – концами соответствующих фаз.

    Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .

    Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U 2 , U 3 , или в общем виде U ф, а линейные напряжения – U12, U23 , U 31 , или в общем виде U л.

    Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение U л = √ 3 U ф ≈ 1,73 U ф

    Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л – 380 В.

    В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.

    При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.

    При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.

    Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку – это соединение треугольником, изображенное на рис. 4.

    Рис. 4. Схема соединения обмоток трехфазного генератора треугольником

    Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника — точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.

    Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √ 3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.

    При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.

    На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 — при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).

    На рис. 7 показана схема соединения нагрузок треугольником при трехпроводной системе проводки.

    Рис. 5. Соединение нагрузок звездой при трехпроводной системе проводки

    Рис. 6. Соединение нагрузок звездой при четырехпроводной системе проводок

    Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки

    Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой – под напряжением, в √ 3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).

    Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на √ 3 .

    Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √ 3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис. 5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.

    При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

    Подписывайтесь на наш канал в Telegram!

    Просто пройдите по ссылке и подключитесь к каналу.

    Не пропустите обновления, подпишитесь на наши соцсети:

    Как подключить три фазы к частному дому?

    Этапы подключения дома к трехфазной сети. Перечень необходимых документов для получения разрешения на проведения 380 Вольт к частном дому.

    В наше время без качественной и продуманной системы электроснабжения не обойтись. Если при покупке квартиры эта проблема решается не хозяином жилья, а строительной компанией, то для снабжения электричеством частного дома существует выбор. В квартиру подведено уже однофазное питание, да и такого напряжения там вполне достаточно. Однако в частном секторе трехфазная сеть может быть вполне актуальной. В этой статье мы расскажем, какая электрическая сеть лучше: трёхфазная или же однофазная, а также как провести 380 Вольт в частный дом по закону. Содержание:

    • Преимущества и недостатки трехфазной системы электроснабжения
    • Как оформить подключение трех фаз

    Преимущества и недостатки трехфазной системы электроснабжения

    Не секрет, что трехфазное электроснабжение частного дома стает всё более актуально, и это связанно не только с величиной напряжения. Давайте разберёмся во всех преимуществах 380 Вольт и вот их перечень:

    1. Подключение самых распространённых в быту и на производстве асинхронных электродвигателей с короткозамкнутым ротором. При подключении к однофазной цепи теряется их мощность, крутящий момент, а также КПД. Ведь они первоначально были рассчитаны на три фазы. Применение таких электромашин в частном доме может понадобиться при обустройстве точильного, сверлильного или деревообрабатывающего станка и других видов техники. Владелец, который обладает навыками работы на таком оборудовании, всегда найдёт ему применение. На даче всегда пригодится мощный насос, поэтому провести 380 Вольт и тут не помешает.
    2. Подключив три фазы, владелец частного дома получает, по большому счёту, сразу три независимые однофазные сети, которыми может распоряжаться по своему усмотрению. Для этого того чтобы получить однофазное напряжение 220 Вольт, нужно подключить один провод к фазе, а другой к нулю. Оно будет называться фазным. Напряжение между двумя фазами равняется 380 Вольт и называется линейное.
    3. При поломке или аварийной ситуации на распределительной подстанции может отгореть одна или даже две фазы. При этом у владельца частного дома с тремя фазами как минимум освещение и холодильник будет работать. При этом нужно помнить, что для трёхфазных двигателей работа на две фазы повлечёт за собой неминуемый выход его из строя.

    Учтите, и тут есть свои подводные камни. Трехфазная сеть нужна в том случае, если недостаточно мощности однофазной сети. И даже если однофазной недостаточно не нужно спешить подключать три фазы, лучше уточнить о возможности увеличения лимита мощности для однофазной сети — эта процедура намного проще, чем согласование и подключение трех фаз. Три фазы в обязательном порядке подключают в том случае, если нужно запитать трехфазные электродвигатели, которые не могут работать в однофазном режиме, либо в случае одновременного использования большого количества электроприборов, оборудования, например, если в доме большое хозяйство, налажено какое-то мелкое производство.

    Также следует отметить еще несколько недостатков трехфазной системы электроснабжения. Один из минусов — необходимость равномерного распределения нагрузок по каждой из фаз. Второй недостаток — большая сложность в подключении, приобретении другого щитка, защитных аппаратов и т.д. Третий недостаток — большая опасность с точки зрения поражения током, так как в доме будет не только однофазное напряжение 220 В, но и линейное — 380 В

    Как видите, преимущества питания потребителя от сети 380 Вольт не всегда очевидны. Теперь стоит разобраться, какие документы нужны для подключения трехфазной сети. Об этом мы сейчас и поговорим.

    Как оформить подключение трех фаз

    Конечно же, перед тем как перейти к технической стороне вопроса и непосредственно к подключению нужно обратиться в компанию, являющуюся поставщиком электроэнергии в данном конкретном регионе. Для этого заказчику необходимо чётко понимать и согласовать следующие моменты:

    • Мощность сети.
    • Тип счётчика и тариф. Это может быть многотарифный прибора учёта или однотарифный.
    • Количество фаз (в данном случае 3).
    • Схема подключения;
    • Организация заземления, которое крайне необходимо для защиты людей от электрического тока при пробое или ухудшении сопротивления изоляции.

    Важно! Самостоятельное подключение к энергосетям запрещено законом! Процедура подключения и организации энергоснабжения должна выполняться высококвалифицированным персоналом. Для того чтобы подключить частный дом к трехфазной сети, она должна быть полностью обесточена, а выполнять это без энергослужбы также запрещается.

    Поставщики при этом придерживаются чётких требований и правил. Поэтому, если расстояние от частного дома до сетей 380 Вольт, проходящих чаще всего по столбам, будет больше 300 метров в черте города (500 за городом), то чтобы провести электричество придется оплачивать ещё и установку опоры.

    Важно также отметить, что часто перед подключением необходимо предоставлять данные о состоянии домашней электропроводки. Если в доме старая электропроводка, то высока вероятность, что представители электросетей не только не дадут разрешение на подключение трех фаз, но и сократят до минимального лимит по однофазной сети из соображений безопасности, так как проводка не может выдержать большой нагрузки.

    Следующим ключевым вопросом по подключению дома к сети 380 Вольт будет мощность, которую потребитель будет брать из сети.

    Есть три степени:

    • первая — не больше 16 кВт;
    • вторая — от 16 до 50 кВт.
    • третья — от 50 до 160 кВт.

    Конечно, лучше организовать электроснабжение с запасом по мощности, тем более что рост количества приборов, которые работают на этом виде энергии, пока очевиден. Однако стоимость данной системы будет выше.

    Еще важно отметить насчет лимита мощности — обычно для рядового потребителя не дают больше 50 кВт. И в данном случае все зависит от состояния электрических сетей, мощности трансформатора в КТП либо в ТП. Если мощность небольшая, то снабжающая организация распределяет примерно мощность по домам и выше этой мощности нельзя подключить, тем более три фазы. В этом случае для подключения трех фаз необходимого лимита мощности нужен отдельный трансформатор — это уже более сложная процедура, так как нужно приобретать КТП, подключать к высоковольтной сети 6 (10) кВ. Поэтому рядовому потребителю приходится довольствоваться определенным лимитом мощности однофазной сети.

    В перечень документов, которые должны быть для подключения 380 Вольт (помимо самой заявки), входят:

    1. Удостоверение личности.
    2. Идентификационный номер законопослушного налогоплательщика.
    3. Правоустанавливающая документация на жилое или нежилое помещение (в случае подключения гаража).
    4. Утвержденный полный план жилого помещения (при наличии).

    С указанных документов снимается копия, которая и подаётся в компанию поставщику электрической энергии. Однако сверка с оригиналами тоже обязательна.

    Некоторые поставщики также могут запросить дополнительные документы, на всякий случай, их нужно тоже взять с собой:

    • Информацию о мощности и список всего имеющегося электрооборудования в частном доме, в гараже или на даче. В зависимости от того, куда нужно провести трехфазное электричество. Если подключение выполняется на участок, не имеющий электрооборудования, то указать придется предположительные его виды и мощность.
    • Сведения об их максимальной мощности.
    • Приблизительное время ввода в эксплуатацию жилья, если это ещё не жилой объект.

    Установка многотарифных счётчиков очень выгодна, так как если не использовать мощные приборы в часы пик, можно существенно сэкономить. Например, ночью стоимость электроэнергии в разы дешевле чем днём.

    Порядок оформления многотарифного счётчика:

    1. Подготовка заявления с просьбой установки электросчетчика.
    2. Получение технические условий для данного счётчика, который нужно приобрести, если у поставляющей электроэнергию компании нет данного оборудования. Зачастую они и сами предоставляют услуги не только подключения, но и продажи приборов учета.
    3. Приобретение, а также программирование электросчетчика.
    4. Вызов представителя энергоснабжающей компании для проверки правильности подключения прибора учета, а также его опломбировки.
    5. Внесение изменения в соглашение или же составление нового, при организации нового подключения трёх фаз.
    6. Получение разрешения на подключение 380 Вольт.

    Кстати, существует еще такой вариант, как преобразование однофазного напряжения в трехфазное. О том, как сделать 380 Вольт из 220 можете узнать, перейдя по ссылке.

    Номинальные характеристики автоматических выключателей должны полностью соответствовать нагрузке, подключаемой к ним. На автоматах нет указанной мощности, на корпусе указаны только напряжение и ток, на который он рассчитан. О том, как выбрать автоматический выключатель, мы рассказали в отдельной статье.

    Что касается технической части, а именно подключения трехфазного напряжения к частному дому, это дело лучше доверить специалистам, т.к. при отсутствии опыта и навыков самостоятельно провести три фазы будет практически невозможно.

    Чтобы вы понимали, насколько все серьезно, ниже предоставлена примерная схема подключения 380 Вольт в частном доме, с разводкой на автоматы:

    Для ознакомления с технологией проведения трех фаз рекомендуем изучить следующий блок статей:

    • Как соединить СИП с медным кабелем
    • Как провести электропроводку в доме
    • Как сделать заземление в доме
    • Как собрать трехфазный щит
    • Как распределить нагрузку по фазам
    • Как разделить электропроводку на группы
    • Схема подключения трехфазного УЗО

    Конечно же, для того чтобы получить в частный дом, на дачный участок или в гараж выгодное, довольно мощное и универсальное трёхфазное напряжение, придется потратить некоторые усилия, время и средства. Документы, согласование, подключение, более сложная схема проводки и соответственно дороже электромонтаж, поэтому еще раз хорошо подумайте, нужны ли вам три фазы.

    Напоследок рекомендуем просмотреть полезные видео, на которых рассказывается целесообразность подключения трех фаз, а также нюансы подготовки документов:


    Теперь вы знаете, как провести 380 Вольт в частный дом и какие документы нужны для этого. Надеемся, наша пошаговая инструкция была для вас полезной и помогла самостоятельно подключить дом к трехфазной сети!


    Чем трехфазное напряжение отличается от однофазного

    Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт

    Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.

    Итак, почему в некоторые электрощитки приходит напряжение 380 Вольт, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

    Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).

    Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

    Чем три фазы отличаются от одной?

    В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

    Напряжения в трёхфазной системе

    Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

    Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

    Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

    Подробнее о перекосе фаз, и от чего он бывает – здесь.

    А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.

    Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

    Преимущества и недостатки

    Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

    Однофазная сеть 220 В, плюсы

    • Простота
    • Дешевизна
    • Ниже опасное напряжение

    Однофазная сеть 220 В, минусы

    • Ограниченная мощность потребителя

    Трехфазная сеть 380 В, плюсы

    • Мощность ограничена только сечением проводов
    • Экономия при трехфазном потреблении
    • Питание промышленного оборудования
    • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

    Трехфазная сеть 380 В, минусы

    • Дороже оборудование
    • Более опасное напряжение
    • Ограничивается максимальная мощность однофазных нагрузок

    Когда 380, а когда 220?

    Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

    Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

    Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

    Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.

    Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

    Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

    Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.

    Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

    Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.

    Например, если дом питается от одной фазы, и потребляет мощность 15 кВт – это ток около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

    Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

    И на вводе (перед счетчиком) стоят примерно такие “ящички”:

    Трехфазный ввод. Вводной автомат перед счетчиком.

    Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

    Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

    Схемы Звезда и Треугольник в трехфазной сети

    Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

    Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

    В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.

    Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

    Система распределения электроэнергии

    Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

    На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

    Трехфазное питание – ступени от генератора до потребителя

    На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

    Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

    Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

    Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

    Напоследок – ещё несколько фото с комментариями.

    Электрощит с трехфазным вводом, но все потребители – однофазные.

    Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.

    Трехфазный ток

    В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.

    Трехфазная система переменного тока

    Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).

    Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.

    Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.

    Что такое трехфазный ток

    Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).

    Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.

    Общая формула мощности переменного тока:

    где:

    • P – мощность, (Вт);
    • I – ток, (А);
    • U – напряжение, (В);
    • cosϕ – коэффициент мощности.

    Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.

    В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.

    Почему используют трехфазный ток

    Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.

    Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:

    • экономичное транспортирование энергии на дальние расстояния без снижения параметров;
    • 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
    • возможность обеспечить сбалансированность энергосистемы;
    • одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).

    К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.

    Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.

    На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.

    Как осуществляется работа генератора

    Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.

    Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.

    Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.

    Генераторы, вырабатывающие трехфазное напряжение, могут иметь:

    • неподвижные магниты и подвижный (вращающийся) якорь;
    • неподвижный статор и магнитные полюса, которые вращаются.

    В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).

    Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.

    Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.

    Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.

    На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.

    Существует несколько способов возбуждения генераторов, а именно:

    • независимый – с помощью аккумулятора;
    • от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
    • благодаря самовозбуждению – собственным выпрямленным током.

    Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.

    Схемы трехфазных цепей

    Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:

    • звезда;
    • треугольник.

    Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.

    Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:

    • присоединение «звезда – звезда» с использованием нулевого проводника;
    • подключение «звезда – звезда» без использования нулевого провода;
    • подсоединение «звезда – треугольник»;
    • схема «треугольник – треугольник»;
    • соединение «треугольник – звезда».

    Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.

    Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.

    На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.

    Соединение звездой

    Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.

    Соединение треугольником

    При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:

    • конец «А» – с началом «В»;
    • конец «В» – с началом «С»;
    • конец «С» – с началом «А».

    Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.

    Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:

    Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:

    • достигается увеличение мощности в 1,5 раза;
    • повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
    • резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.

    Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.

    При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:

    • ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
    • ток, движущийся по обмоткам источника или нагрузки, называется фазным.

    Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.

    Мощность тока при схеме «звезда» определяется по формуле:

    P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,

    где:

    • Uф – фазное напряжение;
    • Uл – линейное напряжение;
    • Iф – фазный ток;
    • Iл – линейный ток;
    • cosϕ – сдвиг фаз.

    Мощность тока при схеме «треугольник» вычисляется по формуле:

    P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.

    К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.

    Фазное и линейное напряжение в трехфазных цепях

    Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.

    Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:

    Так как sin600= √3/2, то формула принимает вид:

    Значит, Uл = 1,73*Uф

    При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.

    Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.

    Сети с изолированной нейтралью прекрасно работают по трём фазным проводам. Соединения такого типа исключают одновременное использование и фазного, и линейного напряжения. При такой схеме существует риск получить удар током при пробое изоляции.

    Отличия от однофазного тока

    Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.

    Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:

    • линейное напряжение не рассчитано на питание однофазных потребителей;
    • величина мощности нагрузки зависит от сечения питающего кабеля;
    • возможность включения в сеть трёхфазных потребителей;
    • допустимость переключения однофазного потребителя на другую фазу.

    В связи с этим использование трёхфазного тока более эффективно на производстве.

    Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.

    Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.

    Видео

    Читайте также:  Схема крепления люстры на крюк
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: