Трехфазная вилка и 3-фазная розетка на 380 вольт: особенности и типы, как подключить

Особенности применения трехфазных розеток

Не так давно, трехфазный ввод на объект потребителя считался прерогативой промышленных предприятий. Хотя, если разобраться детально в схемах энергоснабжения многоквартирных домов, выяснится, что жильцы получают заветный 220 вольт именно от трехфазного щита питания. Наверняка, многие из вас замечали, что при аварии на электрической магистрали питание может пропадать не во всем доме сразу, а как бы в шахматном порядке. При этом, в разговорах среди ремонтников звучит фраза: «вторую фазу выбило…».

Это означает, что потребители в многоэтажке распределены на три группы (как правило, с равномерной нагрузкой). На объект заведен трехфазный силовой кабель (четырех жильный, без учета отдельной шины рабочего заземления) с общим прибором учета и единым автоматом. На выходе 3 линии с напряжением 380 вольт между ними, и рабочий нуль. Далее, по каждому из трех направлений, прокладывается двухжильный силовой провод (без учета рабочего заземления), на котором между фазой и нулем привычные 220 вольт.

Поскольку потребители в своих поквартирных распределительных щитках имеют доступ только к одной фазе, такое электропитание к трехфазному все-же не относится.

Однако есть жилые дома (включая многоквартирные), в которых вводной щиток выглядит так же, как на предыдущей иллюстрации. Например, дома, в которых нет природного газа. Зачастую в квартирах устанавливаются трехфазные электроплиты. Три фазы могут понадобиться в помещениях с электрическим водонагревателем или отопительным котлом. Такое электрооборудование тоже может использовать три фазы с напряжением 380 вольт.

Для чего применяется электропитание с повышенным напряжением

По той же причине, по которой магистральные линии электропередач работают под напругой 10 тысяч вольт. Чтобы обеспечить определенную нагрузку (мощность электроприбора), есть два пути: повысить силу тока при пониженном напряжении, либо напротив: повышая вольтаж, можно снизить ток в цепи. Для экономии силовых кабелей, рациональнее подавать потребителю 380 вольт вместо 220.

Выгода очевидна: сила тока ниже, меньше греются провода, их сечение можно уменьшить. Равно как и коммутирующие устройства рассчитаны на меньший ток.

Соответственно, для подключения конечных электроустановок, в помещении должна быть трехфазная розетка.

Важно! Если у вас в доме установлена розетка на 3 фазы, подключать к ней мощные однофазные потребители без специально коммутации входных клемм запрещено!

При этом возникает перекос нагрузки, это негативно сказывается на работе генерирующих устройств, и может вывести из строя защитную автоматику.

Разновидности трехфазных розеток

В отличие от однофазных, розетки на 3 фазы различаются не только по степени защиты, и способу монтажа.

  1. Защита может быть от поражения электрическим током, а еще от пыли и влаги. Система IP** определяет, насколько корпус противостоит внешней среде. Первая цифра (пыль) может быть от 0 до 6, вторая цифра (влага, вода) от 0 до 9. То есть, маркировка IP-69 означает полную герметичность розетки.
  2. Количество разъемов определяется способом подключения потребителя. Для схемы «звезда» потребуется минимум 5 гнезд. Три фазы, рабочий нуль и защитное заземление.
    Это самая распространенная схема. Конфигурация разъемов имеет несколько стандартов, устанавливаемых производителем. Розетки такого типа необходимо покупать в паре с вилкой. Розетки и вилки разных брендов могут не подойти друг к другу.Вот так выглядит пяти контактный комплект от «Legrand»:При подключении по схеме «треугольник», рабочий нуль не нужен. В розетке будет 4 контакта: три фазных, и защитная земля. Розетка может выглядеть так:

Кроме того, есть качественные комплекты, выполненные еще по ГОСТ СССР, с рядным расположением разъемов.

Теоретически, такие розетки могут работать и по схеме «звезда», если защитное заземление проведено по отдельной линии, в обход розетки. Но это небезопасно: нет уверенности, что «земля» подключена правильно.

Самое безопасное подключение трехфазной розетки — на 7 контактов. Это вариант для схемы «звезда», но на каждую фазу есть свое защитное заземление. Такой способ набирает популярность в странах Евросоюза, но практическое применение для трехфазных электроустановок сомнительно.

  • По способу монтажа есть три основных модификации:
    • Трехфазная розетка скрытой установки. Монтажная коробка прочно монтируется в стену, розетка устанавливается заподлицо.Не путать с понятием «розетка трехместная для скрытой установки» в данном случае речь идет о комплекте из 3 однофазных розеток в одном корпусе.
    • Накладная розетка. Для домашней установки не самый удобный вариант: слишком громоздкая.
    • Для уличного монтажа. Такие комплекты как правило имеют защиту не ниже IP-67.
  • Правильно подключаем к вводному устройству

    В первую очередь, разберемся с цветовой маркировкой. Силовой кабель для трехфазного подключения может иметь европейские цвета, или соответствовать Правилам устройства электроустановок. В первом случае фазы маркируются коричневым, белым (серым) и черным цветом оболочки. Во втором — (что маловероятно для жилых домов), желтым, зеленым и красным. Общее у кабелей одно: равно как и в однофазной системе, рабочий нуль будет синим (голубым), а защитное заземление желтым с зеленой полосой по длине провода.

    После трехфазного прибора учета (электросчетчика), должен быть установлен четырехполосный автомат. Именно на 4 линии: поскольку и фазы, и нуль при необходимости должны отключаться.

    Важно! Защитное заземление заводится в розетку без возможности его разрыва коммутационным устройством (автоматом)!

    В принципе, привязка конкретных линий к номерам контактов никакими инструкциями не определена. Каждый пользователь сам определяет, как именно подключить трехфазную розетку.

    По негласным правилам, на четырех контактной розетке (к примеру), рабочий нуль располагается справа.

    А на 5-контактной (с защитным заземлением) в центре.

    Для уличной розетки с защитой от попадания пыли и влаги, так же существует типовая схема разводки линий.

    И все-же, трехфазные потребители соединяются с точкой питания индивидуально, универсальности быть не может. Если вы вводите в эксплуатацию электроплиту — на входной коммутационной колодке есть несколько вариантов организации питания: на 220 или 400 вольт.

    По умолчанию могут быть установлены перемычки, которые приведут к короткому замыканию между фазами. Поэтому сначала следует изучить инструкцию к электроустановке, а затем планировать расположение контактов в розетке.

    Установки с трехфазными электромоторами имеют свой порядок питания. Опять же возвращаемся к основному правилу: никакой универсальности.

    Проверка фаз с помощью мультиметра

    Если розетка уже имеется, но при этом вы не знаете расположение линий на контактах, можно легко определить их назначение, кроме номеров фаз. Делается это с помощью тестера.

    Между любыми фазными контактами должно быть напряжение 380 вольт. Между рабочим нулем и каждой из фаз — 220 вольт. Аналогичный показатель получится и между защитным заземлением с фазами. При этом, определить, где «нуль», а где «земля» (в розетках с 5 контактами) достаточно сложно.

    1. Если силовой кабель имеет стандартную маркировку, необходимо вскрыть корпус розетки, и убедиться, что «земляной» провод (соответствующего цвета) соединен с «правильным» контактом с одной стороны, и шиной рабочего заземления с другой стороны (в распределительном щитке).
    2. При невозможности определить провод визуально, проверяем разницу в потенциале для «нуля» и «земли».

    Важно! Данный способ работает лишь в случае, когда заземление организовано согласно Правилам устройства электроустановок, и не имеет физической связи с рабочим нулем.

    Кстати, при объединении «нуля» и «земли» эксплуатация электроустановок вообще запрещена.

    Суть метода: если произвести замеры с коротким интервалом сначала между фазой и «нулем», а затем между фазой и «землей», во втором случае напряжение будет немного ниже. Это связано с тем, что линия между защитным заземлением и фазой проходит через физическую землю (грунт), где сопротивление выше, чем у кабеля нулевой шины.

    Установка розетки

    В принципе, монтаж любого типа (скрытая, накладная) мало чем отличается от однофазной розетки. Однако есть важная особенность:

    В силовых розетках на 3 фазы, количество контактов больше, чем в обычных. Сила прижима существенно выше. Для извлечения вилки потребуется приложить больше усилий: если крепление недостаточно надежное — есть риск просто вырвать розетку из стены. Поэтому для установки подобных изделий следует применять надежные дюбели большого диаметра, или анкерные соединения.

    При монтаже такой розетки на гипсокартонную стену (без несущего капитального основания), следует установить усиливающую накладку площадью, вдвое превышающую диаметр розетки.

    При подключении проводов к разъемам, не допускается слабина затяжки, или перекос фиксирующих элементов. По возможности, концы проводников надо подготовить: облудить или загильзовать многожильный проводник, или установить контактные клеммы.

    Если не выполнить эти требования — по одной из фаз может возникнуть просад напряжения (по причине плохого контакта), что может привести к выходу из строя электроустановки.

    Видео по теме

    Схемы регуляторов скорости вращения вентилятора на 220 В

    Для эффективного режима работы вентилятора, получающего питание от промышленной сети, применяют регулятор скорости вращения. Вентилятор на 220 Вольт, использующий регулировку, может стать практически бесшумными и повысить комфортность обслуживаемого им помещения. Чтоб регулировать обороты, необязательно покупать готовый прибор, даже без специальных знаний его несложно собрать самостоятельно.

    • Принцип работы вентилятора
    • Схемы вращения
      • Регулятор скорости на симисторе
      • Управление с использованием автотрансформатора
    • Покупка готового регулятора

    Принцип работы вентилятора

    Согласно техническому определению, вентилятор — это прибор, служащий для перемещения газа путём создания избыточного давления или разрежения. По своему конструктивному исполнению он разделяется на осевой и радиальный. Практически все вентиляторы, применяемые в быту, представляют собой осевой тип конструкции. Использование этого вида характеризуется удобством получения направленного воздуха различной силы и давления. Вентиляторы разделяют по месту использования, они могут быть:

    • многозональные;
    • канальные;
    • напольные;
    • потолочные;
    • оконные.

    Осевые, иное название аксиальные, вентиляторы в качестве основного узла используют рабочее колесо. Это колесо располагается на оси электродвигателя, содержит внешний ротор и имеет в своей конструкции лопатки, расположенные под углом с учётом аэродинамических свойств. Благодаря такому расположению и происходит создание и формирование воздушного потока.

    В качестве электродвигателя применяют однофазный асинхронный двигатель, ось которого повторяет движения нагнетаемого или разряжаемого им потока воздуха. Такой электромотор состоит из ротора, размещённого внутри статора. Промежуток между ними составляет не более двух миллиметров. Статор имеет вид сердечника с пазами, через которые намотана обмотка. Ротор выглядит как подвижная часть с валом, содержащая в своём составе сердечник с короткозамкнутой обмоткой. Такая конструкция напоминает беличье колесо.

    При подаче переменного тока на обмотку статора, согласно законам физики, появляется переменный магнитный поток. На помещённом внутрь этого потока замкнутом проводнике возникает электромагнитная индукция (ЭДС), а значит, появляется и ток. Благодаря чему в переменном магнитном поле оказывается проводник с током. Это приводит к вращению проводника, то есть ротора.

    Таким образом, чтоб создать регулятор оборотов вентилятора на 220 В, понадобится изменять величину воздействующего на ротор магнитного поля. В свою очередь, значение магнитного поля зависит от величины тока, а значит при снижении его величины уменьшается и скорость вращения.

    Ещё один параметр, от которого зависит число оборотов электродвигателя, является частота переменного напряжения. Частотные преобразователи, изменяющие частоту, характеризуются сложностью изготовления и дороговизной, по сравнению с изменяющими уровень напряжения. В бытовых условиях применяются редко, хоть позволяют достигать лучших результатов в точности настройки.

    По виду используемой схемотехники приборы, управляющие скоростью вращения, разделяются на:

    • тиристорные;
    • трансформаторные.

    Схемы вращения

    Так как в основе работы вентилятора используется явление ЭДС, то это приводит к тому, что возникают паразитные вихревые токи, нагревающие металлические части электродвигателя, при изменении формы сигнала напряжения сети. Использование диммеров, служащих для управления светосилой яркости ламп, не рекомендуется из-за повышенного нагрева двигателя. Поэтому при изготовлении регулятора скорости вентилятора на 220 В, применяются полупроводниковые элементы.

    Регулятор скорости на симисторе

    Регулирующим полупроводником служит симистор. Работает он в ключевом режиме, то есть или включён, или выключен. Симистор состоит из двух тиристоров, включённых встречно – параллельным способом. Каждый тиристор пропускает через себя только одну полуволну сигнала. Такая схема обладает маленькими размерами и имеет низкую стоимость.

    В таком регуляторе используется принцип фазового управления, изменение момента включения и выключения симистора относительно фазового перехода в нулевой точке.

    Управление симистором осуществляется с помощью переменного резистора, в зависимости от поворота последнего задаётся порог срабатывания полупроводникового прибора. В результате чего отсекается часть синусоидального сигнала, поступающего на электродвигатель вентилятора, величина значение напряжения уменьшается и соответственно обороты двигателя тоже уменьшаются.

    При управлении частотой вращения электродвигателя контроль работы тиристора происходит длительными импульсами.

    Благодаря чему, кратковременные отключения активной нагрузки не изменяют режим работы схемы. Схема подразумевает разделение включения электродвигателя с тиристором VS2 и питающего напряжения 220 вольт, через диодный мост.

    Управление тиристором осуществляется с помощью генератора, собранного на транзисторе VT1. Питание генератора реализуется сигналом трапециевидной формы, полученным после прохождения через стабилитрон VD1 с частотой 100 кГц. В то время как на конденсаторе C1 появится напряжение, величины которого станет достаточно для открытия транзистора, на управляющий электрод тиристора поступит положительный сигнал. Тиристор VS2 откроется и с него поступит напряжение на электродвигатель, приводящее к его запуску.

    Резисторы R1, R2, R3, образуют цепочку разряда конденсатора C1. Управляя значением сопротивления R1, в качестве которого используется переменный резистор, изменяется скорость разряда конденсатора, а значит и частота оборотов вентилятора. Диод VD2, подключённый параллельно к обмотке L1, предотвращает ложное срабатывание тиристора, возникающее из-за использования нагрузки индуктивного рода.

    Управление с использованием автотрансформатора

    В качестве основного элемента схемы используется автотрансформатор. Он представляет собой трансформатор, в котором соединение первичной и вторичной обмотки выполнено напрямую. В результате чего одновременно осуществляется магнитная и электрическая связь. Обмотка автотрансформатора имеет несколько ответвлений с разными на них значениями величины напряжения. Преимущество такого использования заключается в достижении более высокого коэффициента полезного действия из-за преобразования лишь части мощности.

    Принцип работы регулятора, скорости вращения вентилятора состоит в следующем. На первичную обмотку автотрансформатора T1 поступает питающее напряжение сети. Обмотка имеет как минимум три ответвления от части витков. При подсоединении нагрузки к разным ответвлениям получается уменьшенное напряжение питания. Используя переключатель SW1, двигатель вентилятора M коммутируется к одной из части обмотки, при этом его скорость вращения меняется. При такой работе выходной сигнал не изменяет своей формы, оставаясь синусоидальным, что положительно влияет на обмотки двигателя.

    Переключатель представляет собой ступенчатую шкалу, не позволяя плавно управлять скоростью вращения. Устройства такого типа имеют большие габариты и массу, по сравнению с другими видами.

    Усовершенствованной моделью является использование электронного управления.

    В основе работы лежит принцип широтно-импульсной модуляции. Изменяя состояние режима работы ключевых транзисторов, образовываются импульсы, позволяющие совершать плавную регулировку выходного сигнала. Чем меньше длительность импульса и длиннее период, тем меньше мощности передаётся вентилятору, а значит и обороты вращения его снижаются. В качестве ключей применяются малошумящие полевые транзисторы, имеющие значительно большие входные сопротивления по сравнению с биполярными.

    Из-за плохой помехозащищенности узел автотрансформатора выполняется непосредственно в близости от вентилятора, но обладает компактными размерами и невысокой стоимостью.

    Покупка готового регулятора

    Подключение регуляторов осуществляется последовательно перед электродвигателем вентилятора в разрыв цепи. В зависимости от своего вида, прибор может располагаться в любом удобном месте, встраиваться в щиток на DIN рейку, монтироваться вместо розетки, быть отдельно стоящим блоком. При этом сам блок управления и пульт регулировки могут быть как совмещены, так и разделены между собой в пространстве.

    В торговых точках представлены регуляторы различного вида и ценовой стоимости в зависимости от плавности регулировки, места расположения, дополнительных функций. Наиболее популярными производителями являются:

    • Selpo.
    • Vents.
    • Vortice.
    • Soler & Palau.
    • Venmatika.
    • ЭРА.

    Некоторые приборы оснащаются дополнительными функциями в виде подсветки или цифрового экрана, показывающего процентное содержание установленной скорости от максимума. Переключение скорости, в зависимости от схемотехники устройства, производится поворотом ручки с помощью галетного переключателя или кнопками.

    Существуют устройства, позволяющие одним регулятором управлять сразу несколькими вентиляторами, при этом важно, чтобы общий ток не превышал ток регулятора. В них можно установить время выключения регулятора, обычно в диапазоне одного часа. Подключённое устройство запоминает и сохраняет настройки даже при его выключении.

    Управлять скоростью вращения вентилятора можно используя несложные приборы, которые легко собираются самостоятельно. Затратив немного времени, получится сэкономить на покупке готового устройства.

    При самостоятельном изготовлении, конечно, важно соблюдать технику безопасности, так как существует возможность попадания под опасное напряжение сети. При отсутствии желания или возможности приобретается готовое устройство, работа которого будет подкреплена гарантией от производителя. Купленное устройство имеет вид полностью законченного и эстетически оформленного прибора.

    3 лучшие схемы регуляторов скорости вентиляторов

    1. Простая схема
    2. С датчиком температуры
    3. Для уменьшения шума
    4. Видео

    Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.

    Регулятор скорости вентилятора — простая схема

    Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

    Список необходимых радиоэлементов:

    • 2 биполярных транзистора — КТ361А и КТ814А.
    • Стабилитрон — 1N4736A (6.8В).
    • Диод.
    • Электролитический конденсатор — 10 мкФ.
    • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
    • Терморезистор — 10 кОм
    • Вентилятор.

    Плата регулятора скорости вентилятора:

    Фото готового регулятора скорости вентилятора:

    Регулятор вентилятора с датчиком температуры

    Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

    • Как сделать управляемую плату регулятора на 1,2–35 В

    Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

    Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

    Необходимые радиодетали:

    • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
    • 4 диода (VD1-VD4) — Д9Б.
    • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
    • Вентилятор (M1).

    Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

    Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

    Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

    Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

    Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

    Схема регулятора скорости вентилятора для уменьшения шума

    В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.

    Необходимые для сборки детали:

    • Биполярный транзистор (VT1) — КТ815А.
    • Электролитический конденсатор (С1) — 200 мкФ/16В.
    • Переменный резистор (R1) — Rt/5.
    • Терморезистор (Rt) — 10–30 кОм.
    • Резистор (R2) — 3–5 кОм (1 Вт).

    Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).

    Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

    Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

    Видео о сборке регулятора оборотов вентилятора:

    Схемы подключения и выбор регулятора скорости вращения вентилятора: обзор лучших моделей и их стоимость

    Вентилятор очень часто используется во многих бытовых приборах. Чтобы этот аппарат прослужил долго, применяется регулятор скорости вращения вентилятора. Он помогает установить нужную скорость вращения лопастей. Этот прием снижает шум прибора и продлевает срок его службы.

    Что из себя представляют регуляторы скорости вращения вентилятора?

    Регулятор скорости (его еще называют контроллер) помогает снизить обороты, когда это необходимо, либо увеличить их. По существу, он изменяет напряжение, подающееся на устройство. Этот небольшого размера прибор подсоединяется к оборудованию по специальной схеме.

    Зачем нужен?

    Если вентилятор постоянно работает на максимальной мощности, это уменьшает срок его службы. Прибор быстро изнашивается и ломается.

    Функции регулятора скорости вращения:

    • уменьшение износа механизмов,
    • снижение шума,
    • экономия электроэнергии.
    Как работает: принцип действия и устройство

    Принцип работы регулятора скорости состоит в том, чтобы изменять напряжение и частоту оборотов двигателя. Это влияет на воздухообмен и изменяет мощность воздушного потока.

    Для управления скоростью могут использоваться разные методы:

    1. Изменение напряжения, подающегося на обмотку.
    2. Изменение частоты тока.

    Второй метод почти не используется, так как частотные приводы очень дорого стоят, во много раз больше самого вентилятора, и не всегда целесообразно их приобретать. В основном, практикуется первый способ.

    Виды регуляторов оборотов

    По принципу регулирования скорости различают несколько видов регуляторов:

    Симисторный регулятор наиболее распространенный, он может охватывать даже не один, а несколько двигателей. Главное, чтобы величина тока не превышала предельную величину.

    Частотные модели могут быть использованы в любых пределах от 0 до 480 В, их применяют для трехфазных двигателей вентиляторов мощностью до 75 кВт.

    Трансформаторные регуляторы применяются для более мощных вентиляторов. Они однофазные или трехфазные, позволяют плавно снижать скорость оборотов, могут регулировать несколько вентиляторов.

    Схемы подключения регуляторов оборотов вентилятора

    Рассмотрим схемы подключения различных регуляторов.

    Самым распространенным прибором является симисторный или тиристорный контроллер. Его можно подключить самостоятельно, используя схему. Каждый из тиристоров уменьшает напряжение. Регулировка производится при помощи блока управления. Мощность прибора ограничена, большого напряжения он не выдерживает.


    Важные моменты:

    • Двигатель вентилятора должен иметь защиту от перегрева.
    • Нельзя использовать в качестве регуляторов диммеры от осветительных приборов.

    Трансформаторный регулятор имеет следующий принцип работы:

    На входе — питающее напряжение 220 В. Обмотка имеет несколько ответвлений, к которым подключается нагрузка, и тогда напряжение уменьшается. При понижении напряжения снижается и потребление электроэнергии. С помощью переключателя мотор подключается к нужной части обмотки и тогда напряжение меняется.

    Трансформатор с электронным управлением работает по другой схеме. Он имеет транзисторную схему, и, модулируя импульсы, может менять напряжение плавно. Чем короче импульсы и длиннее паузы между ними, тем меньше напряжение.

    Ступенчатый трансформаторный регулятор

    В работе этого прибора используется трансформатор. Это обычный трансформатор, только у него одна обмотка и от части витков есть отводы.

    Управление регулятора осуществляется путем ступенчатого изменения напряжения. На низких скоростях уровень шума понижен.

    Обычно используется пять ступеней напряжения, то есть вентилятор будет иметь пять скоростей вращения. Такой регулятор можно использовать и для реверсивных вентиляторов, и для нескольких аппаратов одновременно. Максимальная мощность вентилятора должна быть не более 80 Вт.

    Автотрансформатор с электронным управлением

    Эти модели относятся к разряду наиболее надежных и мощных. По цене это наиболее дорогой прибор. Он имеет небольшие габариты и вес.

    Работает такой регулятор по принципу широтно-импульсной модуляции. Изменения импульсов и пауз между ними дает изменение напряжения и, соответственно, скорости вращения вентилятора.

    Прибор имеет пониженный уровень шума, скорость оборотов может понижаться или повышаться ступенчато, в соответствии с понижением или повышением напряжения.

    Тиристорные и симисторные контроллеры

    Это самые распространенные приборы для регулировки вращения вентиляторов. Они используются для однофазных вентиляторов переменного тока. Тиристорный контроллер изменяет скорость вращения в большую или меньшую сторону в зависимости от изменения напряжения. Может быть установлен в приборах, где есть защита от перегрева.

    Симисторный регулятор — это разновидность тиристорного. В нем используется симистор, который равен двум параллельно включенным тиристорам. Приборы могут применяться как для переменного, так и для постоянного тока. Скорость регулирования — от минимально необходимого напряжения до 220 В.

    Они имеют небольшой размер и плавно переключают скорость, имеют простую конструкцию. К недостаткам можно отнести повышенный шум и небольшой срок службы.

    Производители и популярные модели: рейтинг лучших и цены

    Трансформаторные и автотрансформаторные
    1. ELICENT RVS/R 3V-0,5A

    Пятиступенчатый регулятор высокой степени надежности. Выполнен из высококачественных материалов. Напряжение изменяется ступенчато, что дает возможность так же изменять скорость и экономить электроэнергию. Максимальная мощность — 300 Вт, вес — 1,5 кг, производитель — Италия. Цена — 2800 руб.

    Пятиступенчатый реверсивный регулятор. Выполнен по новейшим технологиям из материалов высокого качества. Отличается надежностью и долговечностью. Используя этот прибор, вы можете увеличивать или уменьшать его мощность, что дает возможность значительной экономии энергии. Максимальная мощность — 300 Вт, вес — 1,5 кг, напряжение — до 230 В. Цена — 2800 рублей.

    Нереверсивный универсальный регулятор вращения имеет следующие функции: включение/выключение вентилятора, четыре возможных режима скорости. Подходит для всех моделей вентиляторов Westinghouse. Изготовлен из пластика, гарантия производителя — 2 года. Цена — 2150 рублей.

    Трансформаторный 5-ступенчатый регулятор может работать при максимальном напряжении до 230 В, рабочий ток — 2А. К несомненным преимуществам этого устройства можно отнести наличие встроенной лампы сигнализации, а также возможность автоматического включения прибора после отказа сети. Вес — 2,2 кг, производитель — Германия. Цена — 6100 рублей.

    Данная модель отличается высокой эффективностью и надежностью. Изготовлен из белого прочного пластика. Регулировка производится ручкой управления от минимального до максимального значения. Максимальное напряжение — 230 В, номинальный ток — 1,8 А. От перегрузки защищен плавким предохранителем. Цена — 1800 рублей.

    Тиристорные и симисторные
    1. СРМ2, 2А

    Симисторный регулятор скорости вращения предназначен для плавного изменения скорости однофазных асинхронных двигателей. Регулирование возможно от минимального значения напряжения, при котором вентилятор начинает вращаться, до 220 В. Имеет предохранитель, защищающий от перегрузки. Для снижения шума от двигателя установлен сглаживающий конденсатор. Цена — 3943 рубля.

    Однофазный тиристорный регулятор скорости предназначен для плавного переключения скорости вентилятора со встроенной термозащитой. Изготовлен из качественного АБС-пластика, устойчивого к ультрафиолетовым лучам. Производитель — Дания. Напряжение может меняться от 0 до 230 В. Регулирование производится вручную. Цена — 2061 рубль.

    Systemair MTY REE 1

    Этот аппарат предназначен для ручного регулирования скорости вентилятора и расхода воздуха, для двигателей с постоянной мощностью. Преимуществом этой модели является возможность как открытого, так и скрытого монтажа. Имеет защиту от брызг и может быть установлен, например, в ванной комнате. Может быть подключено несколько приборов, при условии, что суммарный ток не превышает номинального значения. Масса — 0,25 кг. Мощность — до 230 В. Цена — 2858 рублей.

    Однофазный тиристорный регулятор скорости итальянского производителя. Предназначен для плавного регулирования скорости вентилятора. Выполнен из высококачественных материалов. Несомненные плюсы этого прибора — возможность наружного и встраиваемого монтажа, специальная защитная крышка, имеется конденсатор точной настройки для управления вентилятором на минимальной скорости. Напряжение — 230 В. Цена — 1600 рублей.

    Какого производителя и какой тип лучше выбрать: ТОП-3

    Из вышеперечисленных моделей можно выделить некоторые, как имеющие какие-то отличительные особенности.

    1. R-E-2G 230B,2A. Модель трансформаторного регулятора производства Германии. Высокая стоимость (от 6100 рублей) оправдана некоторыми преимуществами перед другими устройствами. Прибор имеет лампу сигнализации, которая показывает, что он включен или выключен. Можно подключить к управлению один или несколько вентиляторов. Включается автоматически при отключении сети.
    2. Systemair MTY REE 1. Интересен тем, что имеет возможность универсального монтажа: как наружного, так и внутреннего. Также в этой модели предусмотрена защита от брызг, и он может быть установлен в ванной комнате. Стоимость — 2858 рублей, страна-производитель — Швеция.
    3. ELICENT R-10 BUILT-IN-1A.Этот регулятор имеет много дополнительных функций и невысокую цену (1600 рублей). Итальянский производитель предусмотрел возможность наружного и встраиваемого монтажа, наличие защитной крышки. Имеет специальный конденсатор для управления вентилятором на минимальной скорости.
    Что учитывать при выборе устройства?

    При выборе прибора следует учитывать некоторые особенности. Обязательно нужно, чтобы данный тип подходил к вашему вентилятору. Есть и другие моменты, которые нужно учесть.

    • У некоторых регуляторов предусмотрена возможность подключения нескольких вентиляторов.
    • Некоторые модели имеют дополнительные функции.
    • Если электродвигатель вентилятора на 220 В имеет термозащиту, то нужно использовать тиристорный регулятор.
    • Приобретая регулятор, посмотреть его технические характеристики, сравнить с другими моделями.
    • Оценить размеры контроллера, его стоимость, способ монтажа.
    Три лучших модели
    1. Systemair REE. Однофазный тиристорный регулятор шведского производителя пользуется большой популярностью. Допускается использование для нескольких вентиляторов, если общее напряжение не превышает номинального значения. Прибор отличается качеством и надежностью, может устанавливаться как на поверхности, так и заподлицо. Стоимость — 4120 рублей.

    Стоимость

    Стоимость регулятора скорости вращения вентилятора будет зависеть от его параметров, технических характеристик, наличия дополнительных функций, а также страны-производителя.

    Название модели Стоимость, руб
    ELICENT RVS/R 3V-0,5A 2800
    Westinghouse RWC-14-х ступенчатый 2150
    R-E-2G 230B,2A 6100
    Реверсивный ELICENT RVS/R 5V-0,5A 2800
    VENTS PC-1-400 1800
    СРМ2, 2А 3943
    Systemair MTY REE 1 2858
    Где купить регулятор скорости вращения вентилятора?
    В Москве
    1. Компания «Азбука ветра», Москва, ул.Стахановская 24/32Ас9, 7(495)725-52-12, azbukavetra@mail.ru
    2. Компания RUCLIMAT, Москва, ул.Дубнинская, д.83, 7(495)645-83-97, sale@ruclimat.ru
    3. Компания климатической техники «РусСтройИнжиниринг», Москва, ул.Большая Калитниковская, д.42, 7(495)780-99-10, info@rs-climat.ru
    В Санкт-Петербурге
    1. Компания «Лисвент», Санкт-Петербург, Выборгское шоссе, 212 к.8, 7(812)454-01-05, 9363605@mail.ru
    2. Компания «Циклон СПб», Санкт-Петербург, ул.Коллонтай, д.5, 7(812)932-72-96, shop@cyclonespb.ru
    3. Интернет-магазин «ТЭК», Санкт-Петербург, ул.Тамбасова, д.12, офис 47, 7(812)642-80-05, teplo@teplo-spb.ru

    Вентилятор используется во многих устройствах, он применяется и в бытовой, и в офисной технике, и в промышленности. Такое устройство, как контроллер или регулятор скорости, может продлить срок службы оборудования, контролировать его, а также выбирать оптимальный режим работы.

    Управление скоростью вращения однофазных двигателей

    Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

    Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки – рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

    Регулировать скорость вращения таких двигателей необходимо, например, для:

    • изменения расхода воздуха в системе вентиляции
    • регулирования производительности насосов
    • изменения скорости движущихся деталей, например в станках, конвеерах

    В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

    Способы регулирования

    Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

    Рассмотрим способы с изменением электрических параметров:

    • изменение напряжения питания двигателя
    • изменение частоты питающего напряжения

    Регулирование напряжением

    Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя – разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

    n1 скорость вращения магнитного поля

    n2 – скорость вращения ротора

    При этом обязательно выделяется энергия скольжения – из-за чего сильнее нагреваются обмотки двигателя.

    Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз – то есть, снижением питающего напряжения.

    При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

    Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

    На практике для этого применяют различные схемы регуляторов.

    Автотрансформаторное регулирование напряжения

    Автотрансформатор – это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

    На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

    Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

    Преимущества данной схемы:

        • неискажённая форма выходного напряжения (чистая синусоида)
        • хорошая перегрузочная способность трансформатора

    Недостатки:

        • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
        • все недостатки присущие регулировке напряжением

    Тиристорный регулятор оборотов двигателя

    В данной схеме используются ключи – два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

    Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно “отрезается” кусок вначале или, реже в конце волны напряжения.

    Таким образом изменяется среднеквадратичное значение напряжения.

    Данная схема довольно широко используется для регулирования активной нагрузки – ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

    Ещё один способ регулирования – пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно – шумы и рывки при работе.

    Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

    • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
    • добавляют на выходе конденсатор для корректировки формы волны напряжения
    • ограничивают минимальную мощность регулирования напряжения – для гарантированного старта двигателя
    • используют тиристоры с током в несколько раз превышающим ток электромотора

    Достоинства тиристорных регуляторов:

        • низкая стоимость
        • малая масса и размеры

    Недостатки:

        • можно использовать для двигателей небольшой мощности
        • при работе возможен шум, треск, рывки двигателя
        • при использовании симисторов на двигатель попадает постоянное напряжение
        • все недостатки регулирования напряжением

    Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

    Транзисторный регулятор напряжения

    Как называет его сам производитель – электронный автотрансформатор или ШИМ-регулятор.

    Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы – полевые или биполярные с изолированным затвором (IGBT).

    Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

    Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

    Выходной каскад такой же как и у частотного преобразователя, только для одной фазы – диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

    Плюсы электронного автотрансформатора:

          • Небольшие габариты и масса прибора
          • Невысокая стоимость
          • Чистая, неискажённая форма выходного тока
          • Отсутствует гул на низких оборотах
          • Управление сигналом 0-10 Вольт

    Слабые стороны:

          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
          • Все недостатки регулировки напряжением

    Частотное регулирование

    Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина – не было дешёвых силовых высоковольтных транзисторов и модулей.

    Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие – массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

    На данный момент частотное преобразование – основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

    Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

    Однофазные двигатели могут управляться:

    • специализированными однофазными ПЧ
    • трёхфазными ПЧ с исключением конденсатора

    Преобразователи для однофазных двигателей

    В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей – INVERTEK DRIVES.

    Это модель Optidrive E2

    Для стабильного запуска и работы двигателя используются специальные алгоритмы.

    При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

    f – частота тока

    С – ёмкость конденсатора

    В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

    Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя – в некоторых моделях это сделать довольно сложно.

    Преимущества специализированного частотного преобразователя:

          • интеллектуальное управление двигателем
          • стабильно устойчивая работа двигателя
          • огромные возможности современных ПЧ:
            • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
            • многочисленные защиты (двигателя и самого прибора)
            • входы для датчиков (цифровые и аналоговые)
            • различные выходы
            • коммуникационный интерфейс (для управления, мониторинга)
            • предустановленные скорости
            • ПИД-регулятор

    Минусы использования однофазного ПЧ:

          • ограниченное управление частотой
          • высокая стоимость

    Использование ЧП для трёхфазных двигателей

    Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

    Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

    Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого – магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

    В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

    При работе без конденсатора это приведёт к:

    • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
    • разному току в обмотках

    Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

    Преимущества:

            • более низкая стоимость по сравнению со специализированными ПЧ
            • огромный выбор по мощности и производителям
            • более широкий диапазон регулирования частоты
            • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

    Недостатки метода:

            • необходимость предварительного подбора ПЧ и двигателя для совместной работы
            • пульсирующий и пониженный момент
            • повышенный нагрев
            • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

    Регулятор скорости вращения вентилятора: виды устройства и правила подключения

    Вентилятор является одним из малозаметных, но чрезвычайно важных приборов, помогающих создавать благоприятные условия для работы, отдыха и просто приятного проведения времени.

    Без него не смогут функционировать компьютеры, холодильники, кондиционеры и другая техника. Для максимально эффективной работы различных устройств используют регулятор скорости вращения вентилятора.

    Из нашего материала вы узнаете о том, какие бывают регуляторы, особенностях их работы. Также мы расскажем, как своими руками собрать прибор и что для этого потребуется.

    Виды и особенности устройства

    Существует множество видов вентиляторов, они задействованы в работе систем климат-контроля, компьютеров, ноутбуков, холодильников, многой другой офисной и бытовой техники.

    Чтобы контролировать скорость вращения его лопастей, часто применяется небольшой элемент – регулятор. Именно он позволяет продлить срок использования оборудования, а также, значительно снизить уровень шума в помещении.

    Назначение прибора для управления скоростью

    Когда кондиционер или вентилятор постоянно работает в режиме максимальной мощности, предусмотренной производителем, это неблагоприятно сказывается на сроке эксплуатации. Отдельные детали просто не могут выдержать такой ритм и быстро ломаются.

    Поэтому часто можно встретить рекомендации делать запас по мощности при выборе различного рода оборудования, чтобы оно не работало на пределе.

    Также часто в холодильных установках, компьютерах и другой технике определенные элементы перегреваются в процессе работы. Чтобы они не расплавились, производитель предусмотрел их охлаждение за счет работающих вентиляторов.

    Но не все выполняемые задачи требуют максимальной скорости движения вентилятора/кулера. При офисной работе компьютера или поддержании постоянной температуры в холодильной установке нагрузка значительно меньше, чем при выполнении сложных математических вычислений или заморозке соответственно. А вентилятор, не имеющий регулятора, будет вращаться с одинаковой скоростью.

    Скопление большого количества мощной техники, функционирующей в одном помещении, способно создавать шум на уровне 50 децибел и более за счет одновременно работающих вентиляторов на максимальных оборотах.

    В такой атмосфере человеку сложно работать, он быстро утомляется. Поэтому целесообразно использовать приборы, способные снизить уровень шума вентилятора не только в производственных цехах, но и в офисных помещениях.

    Помимо перегрева отдельных деталей и снижения уровня шума регуляторы позволяют рационально использовать технику, уменьшая и увеличивая при необходимости скорость вращения лопастей оборудования. Например, в системах климат-контроля, используемого во многих общественных местах и производственных помещениях.

    Одной из важных деталей умных приборов потолочного вентилирования помещения являются регуляторы оборотов. Их работу обеспечивают показатели датчиков температуры, влажности, давления. Вентиляторы, используемые для перемешивания воздуха в помещении спортзала, производственного цеха или офисного кабинета, помогают экономить средства, затрачиваемые на отопление.

    Это происходит за счет равномерного распределения нагретого воздуха, циркулирующего в помещении. Вентиляторы нагнетают верхние теплые слои вниз, перемешивая их с более холодными нижними. Ведь для комфорта человека важно, чтобы в нижней части комнаты, а не под потолком, было тепло. Регуляторы в таких системах следят за скоростью вращения, замедляя и ускоряя скорость движения лопастей.

    Основные разновидности регуляторов

    Контроллеры оборотов вентилятора востребованы. Рынок изобилует различными предложениями и рядовому пользователю, не знакомому с особенностями устройств, легко потеряться среди различных предложений.

    Регуляторы отличаются по принципу действия.

    Выделяют такие типы устройств:

    • тиристорные;
    • симисторные;
    • частотные;
    • трансформаторные.

    Первый тип приборов применяется для корректировки оборотов однофазных приборов, имеющих защиту от перегрева. Изменение скорости происходит за счет влияния регулятора на мощность подаваемого напряжения.

    Второй тип является разновидностью тиристорных устройств. Регулятор может одновременно управлять приборами постоянного и переменного тока. Характеризуется возможностью плавного понижения/повышения скорости оборотов при напряжении вентилятора до 220 В.

    Третий тип устройств изменяет частоту подаваемого напряжения. Основная задача – получить питающее напряжение в пределах 0-480 В. Контроллеры применяются для трехфазного оборудования в системах вентилирования помещений и в мощных кондиционерах.

    Трансформаторные контроллеры могут работать с одно- и трехфазным током. Они изменяют выходное напряжение, регулируя работу вентилятора и защищая прибор от перегрева. Могут использоваться в автоматическом режиме для регулировки оборотов нескольких мощных вентиляторов, учитывая показатели датчиков давления, температуры, влажности и прочие.

    Чаще всего в быту применяются симисторные регуляторы. Их относят к типу XGE. Можно обнаружить много предложений от разных производителей – они компактные и надежные. Причем диапазон цен также будет весьма широк.

    Трансформаторные же устройства довольно дорогие – в зависимости от дополнительных возможностей они могут стоить 700 долларов и более. Они относятся к регуляторам типа RGE и способны регулировать обороты очень мощных вентиляторов, используемых в промышленности.

    Особенности использования приборов

    Регуляторы оборотов вентилятора используются в промышленном оборудовании, в офисных помещениях, спортзалах, кафе, других местах общественного пользования. Также часто можно встретить такие контролеры в системах климат-контроля для домашнего использования.

    Системы вентилирования, используемые в фитнес-центрах, а также, кондиционеры, включаемые для обогрева в офисных помещениях, чаще всего содержат регулятор скорости вращения. Причем это не простой дешевый вариант, а дорогостоящее трансформаторное устройство, способное регулировать скорость вращения мощных приборов.

    Регулятор скорости вентилятора: модели, особенности и схема подключения

    1. Технические характеристики
    2. Принцип работы и предназначение
    3. Сфера применения
    4. Разновидности
      • Ступенчатые модели с применением автотрансформатора
      • Автотрансформаторы с электронным управлением
      • Симисторный (тиристорный) контроллер
    5. Как подключить?

    Вентиляторы широко используются в разных сферах человеческой деятельности. Приборы можно встретить в жилых и общественных помещениях, с их помощью происходит охлаждение компьютеров и ноутбуков, их устанавливают в вытяжные и приточно-вытяжные вентиляционные установки и системы кондиционирования. Однако работа прибора на полную мощность не всегда нужна и целесообразна. Поэтому для ограничения частоты вращения лопастей используют специальные устройства – регуляторы скорости вентиляторов.

    Технические характеристики

    Регулятором скорости вентилятора называют небольшой прибор, способный снижать или увеличивать обороты вращения рабочего вала. Контроллеры подключаются к вентиляторам по определённой схеме и управляются при помощи ручного метода либо автоматики. Автоматические модели тесно взаимосвязаны с другими устройствами вентиляционной установки, например, с датчиками, определяющими температуру, давление, движение, а также с фотодатчиками и приборами, определяющими влажность. Данные с этих приборов передаются на контроллер, который на их основании выбирает подходящий скоростной режим.

    Механические модели управляются вручную. Регулирование скорости вращения осуществляется при помощи колёсика, установленного на корпусе прибора. Нередко контроллеры монтируются в стену по принципу выключателя, что делает их использование удобным, и позволяют в любой момент плавно изменить количество оборотов. Приборы выпускаются в большом диапазоне мощности и способны работать от напряжения как 220, так и 380 В.

    Принцип работы и предназначение

    Во время постоянной работы вентилятора на максимальных оборотах, ресурс прибора исчерпывается достаточно быстро. В результате мощность устройства заметно снижается, а прибор выходит из строя. Это обусловлено тем, что многие детали не способны выдерживать такой ритм, из-за чего они быстро изнашиваются и ломаются. Чтобы ограничить скорость вращения лопастей и увеличить срок службы вентилятора, в вентиляционную установку встраивают контроллер скорости.

    Помимо сбережения рабочего ресурса, контроллеры выполняют важную функцию по снижению шума от работающих вентиляционных систем. Так, в офисных помещениях, где наблюдается большое скопление оргтехники, уровень шума может достигать 50 ДБ, что обусловлено одновременным функционированием нескольких устройств, вентиляторы которых работают на максимальных оборотах. В таких условиях человеку сложно настроиться на рабочий лад и сосредоточиться.

    Выходом из сложившейся ситуации является оснащение вентиляционных установок регуляторами скорости. Ещё одним веским аргументом в пользу использования регуляторов является экономный расход электроэнергии. В результате уменьшения количества оборотов и снижения общей мощности вентилятор начинает потреблять меньше энергии, что положительно сказывается на бюджете.

    Принцип действия контроллера заключается в изменении напряжения, которое подаётся на обмотку двигателя вентилятора. Существуют более дорогостоящие модели, способные регулировать скорость вращения посредством изменения частоты тока. Однако стоимость таких изделий зачастую превышает стоимость самого вентилятора, из-за чего их установка является нецелесообразной.

    Сфера применения

    Контроллеры скорости вращения применяются практически везде, где есть вентиляционные установки. Регуляторы незаменимы при обустройстве вентсистем спортивных залов, офисов и кафе. Нередко такие устройства можно встретить в индивидуальных системах климат-контроля. Кондиционеры, работающие на обогрев помещений, также оборудованы контроллерами – мощными трансформаторными приборами, способными регулировать частоту вращения крыльчатки.

    Однако самым распространённым вариантом установки контроллера являются компьютеры и ноутбуки. Регуляторы способны значительно снижать уровень шума вентиляторов и часто оснащены дополнительными функциями, такими как подсветка, температурный датчик и звуковой сигнал аварийного отключения. Некоторые модели оборудованы дисплеем.

    Контроллеры для компьютерных вентиляторов носят название реобас и способны обслуживать сразу по несколько вентиляторов.

    Разновидности

    Регуляторы ограничения скорости вентилятора бывают нескольких видов.

    Ступенчатые модели с применением автотрансформатора

    Суть работы этого прибора заключается в том, что обмотка прибора разветвлена, поэтому в процессе подключения к ответвлениям вентилятор получает несколько пониженное напряжение. При помощи специального переключателя тот или иной вентилятор подключается к нужному участку обмотки, а скорость его вращения падает. Синхронно с этим снижается потребление электричества, что приводит к общей экономии ресурса.

    Регулировка прибора осуществляется при помощи специальной ручки, оснащённой ступенчатой шкалой, имеющей 5 положений. Достоинствами моделей является их надёжность и долгий срок службы. К недостаткам относят довольно габаритный блок управления, что не всегда удобно при размещении устройства в ограниченных пространствах, а также невозможность плавного переключения. Однако при подключении датчиков температуры и таймера переключение скоростей вращения можно автоматизировать.

    Автотрансформаторы с электронным управлением

    Суть работы таких устройств несколько отличается от принципа действия предыдущих моделей. Прибор оснащён транзисторной схемой и способен модулировать импульсы, плавно изменяя при этом напряжение. Сила напряжения напрямую зависит от частоты импульсов и пауз между ними. Так, при коротких импульсах и длинных паузах напряжение будет намного ниже, чем при длинных импульсах и коротких паузах.

    Преимуществами данного контроллера являются небольшие размеры и комфортная стоимость. К недостаткам относят короткую длину соединяющего кабеля. Это вызывает необходимость отдельного расположения блока от ручки управления и его размещения поближе к вентилятору. Электронные модели используются на крупных производствах в сочетании с мощными вентиляционными установками. Они устойчивы к перегрузкам и способны к непрерывной работе в течение длительного времени.

    Симисторный (тиристорный) контроллер

    Данный вид регуляторов является самым распространённым. Прибор используется для подключения к однофазному вентилятору переменного тока, однако, может работать и с постоянным. При работе прибора каждый из тиристоров понижает выходное напряжение, уменьшая тем самым количество оборотов в минуту. Плюсами устройств является низкая стоимость, небольшой вес и возможность убавления числа оборотов практически до нуля.

    К недостаткам относят вероятность появления искр на обмотке, короткий срок службы и ограничения по мощности нагрузки.

    Как подключить?

    Выполнить подключение контроллера скорости к вентилятору можно своими руками. Для этого необходимо внимательно прочитать инструкцию и соблюдать ряд мер безопасности при работе с электроприборами. В зависимости от вида конструкции и вида обслуживаемых вентиляторов, контроллеры могут быть установлены на стене, внутри стены, внутри вентустановки или в отдельно стоящем шкафу системы «умный дом». Настенный и внутристенный регуляторы закрепляются при помощи шурупов или дюбелей, в зависимости от габаритов и веса устройства. Крепёжные элементы обычно входят в комплект наряду со схемой подключения прибора.

    Схемы подключения у моделей могут отличаться, однако, общие закономерности и последовательность выполнения действий всё же есть. Вначале контроллер нужно подключить к кабелю, подающему ток на вентилятор. Основной целью данного этапа является разделение проводов «фаза», «ноль» и «земля». Затем выполняют подсоединение проводов к входным и выходным клеммам. Главное при этом — не перепутать провода местами и выполнить подключение согласно инструкции. Кроме того, следует проконтролировать, чтобы размер сечения кабеля питания и соединения соответствовал максимально разрешённому напряжению подключаемого устройства.

    При подключении регулятора скорости к вентиляторам ноутбука напряжением 12 вольт необходимо выяснить предельно допустимые температуры деталей устройства. Иначе можно лишиться компьютера, у которого от перегрева выйдут из строя процессор, материнская плата и графическая карта. При подключении контроллера к оргтехнике необходимо также строго следовать инструкции. При необходимости подключения сразу нескольких вентиляторов лучше приобрести многоканальный регулятор, так как некоторые модели способны обслуживать до четырёх вентиляторов одновременно.

    Регуляторы скорости вентиляторов являются важным многофункциональными устройством. Они защищают технику от перегрева, продлевают срок эксплуатации электрических двигателей вентиляторов, экономят электроэнергию и существенно понижают уровень шума в помещениях. Благодаря своей эффективности и практичности приборы обретают всё большую популярность и растущий потребительский спрос.

    О том, как своими руками сделать регулятор скорости вентилятора, смотрите далее.

    Читайте также:  Стены из ламината в интерьере: фото интересных идей в дизайне интерьера, способы укладки и крепления

    Добавить комментарий

    Ваш адрес email не будет опубликован.