Схема розы в технике мозаичного плетения бисером

Роза из бисера: мастер-класс, схема, фото и видео

Вязание крючком игрушки амигуруми год собаки бульдог В год собаки эта .

Дорогие друзья! Сегодня представляем вашему вниманию прекрасный цветок: розу из бисера в необычном синем цвете. Такая розочка будет радовать вас круглый год и согревать душу даже в самые лютые морозы и времена.

Поэтому предлагаем отложить все другие дела и порадовать себя изготовлением поделки собственными руками!

Инструменты и материалы Время: 3 часа • Сложность: Средняя

— бисер (Чехия) #10 — 8 гр. — синего цвета;
— бисер (Чехия) #10 — 4 гр. — зеленого цвета;
— изонить или тонкая леска;
— игла для бисера;
— проволока — 15 см;
— ножницы.

Пошаговый мастер — класс

Перед началом работы, необходимо найти качественную картинку живой розы. Это поможет определить правильное строение цветка и облегчит нам работу по сборке.

Приступаем к изготовлению синей розочки

1. Выполняем внутренние лепестки.

Вооружившись схемой 1, приступаем к плетению внутренних, средних по размеру, лепестков розы. Этих элементов потребуется всего пять.
Нужно уточнить, что данная техника создания, подразумевает отдельное выполнение каждого элемента. Т.е. лепестки при плетении не накладываются друг на друга и не имеют общей основы, они самостоятельны. Правильное же расположение их достигается только во время сшивания.


Как видно на схеме 1 плетение выполняется из середины элемента в направлении к боковой части. Затем нить отрезается. Формируем новую нить и вводим иглу в первую бисерину. Все движения выполняем в зеркальном отражении к противоположной стороне.
Давайте рассмотрим схему плетения более детальнее:
Закрепляем узел в первую бисерину на рабочей нити. Одеваем 9 бисеринок.


Затем еще две.


Возвращаемся по полотну и вводим иглу в 9 бисеринку от начала. Так плетем мозаичным способом до 7 ряда. Затем вводим иглу в ближнюю бисерину и продолжаем выполнение не до конца ряда. Возвращаемся на одну бисерину и нанизываем 4 бисерины в ряду. В следующем 3 бисеринки. Нить хорошо закрепляем и обрезаем.


Вдеваем в иглу новую нить и завязываем узелок. Вводим иглу в самую первую бисерину и продолжаем плетение по схеме.


Таким же образом плетем еще 4 лепестка.

2. Выполняем лепестки внешнего ряда.

Используя схему 2 выполняем плетение внешних, самых больших, лепестков цветка розы.
Плетение выполняем таким же мозаичным способом, как и внутренние лепестки. Размеры внешних лепестков немного больше, но лишь в ширину, не в высоту. Таким образом будущее наложение лепестков друг на друга будет красивым и аккуратным.
Выполняем еще 4 лепестка.

3. Плетем серединку бутона.

Соединяем в кольцо 7 бисерин и параллельным способом выполняем 7 рядов.


Параллельный способ плетения из бисера — это вертикальное расположение бисеринок точно друг над другом. Изонить проходит одновременно два ряда, верхний и нижний. Ряды бисеринок формируют ровные соединенные кольца.

4. Собираем бутон розы воедино.

На этом этапе и пригодится картинка с настоящей розой. Начинаем собирать бутон воедино. Берем серединку бутона и внутренние лепестки.


Поочередно пришиваем их к серединке бутона, по самому нижнему краю лепестков.


Затем берем внешние лепестки и пришиваем их, ко второму снизу, ряду внутренних лепестков. Нить закрепляем, узелки прячем внутрь цветка.

5. Формируем стебель розы.

Берем проволоку. Закругляем у нее один конец. Вставляем в серединку бутона. Протыкаем и нанизаем на нее бисер. Конец закругляем и прячем в бисер.

6. Выполняем листья с веточками розы.

Используя схему 3 выполняем листья розы. Схема очень проста, поэтому описывать ее нет смысла, но если у вас возникают сомнения, то прочитайте ещё раз внимательней начало статьи, там более подробно рассказано о создании лепестков для розы.


Выполняем два больших и четыре маленьких элемента. Получается две небольшие, но аккуратные веточки с листиками. Закрепляем их на стебельке.
И цветок готов! Вот какую невероятную красоту можно создать всего за три часа. Такая роза будет прекрасным подарком на любой праздник, а если еще создать целый букет, то подарку не будет цены. Стремитесь радовать себя и близких и тогда жизнь будет прекрасна, даже в самые хмурые времена!

Читайте также:  Электронные уровни: выбираем цифровые уровни с лазером и магнитные, строительные уровни 80 см и других размеров

Понравилась ли вам такая необычная роза ? Всё ли у вас получилось сделать ? Если для вас пока сложно сделать такую розу, то предлагаем вам попробовать свои силы в другом мастер-классе и сделать розу из бисера для начинающих. Главное не сдаваться, а проявить чуточку терпения, и мы уверены у вас всё обязательно получиться!

Также предлагаем вашему вниманию несколько интересных видео, которое помогут вам ещё лучше понять как сделать розу из бисера. Приятного просмотра!

Роза из бисера видео

Надеемся вам был по душе наш сегодняшний мастер-класс. Попробуйте свои силы в плетении розы, мы уверены, что у вас всё получиться. Если у вас остались какие-то вопросы, то смело пишите их в комментариях ниже, и мы обязательно поможем вам. Также мы будем рады узнать ваше мнение о текущем материале, уделите нам всего несколько минут вашего драгоценного времени.

Нам важна ваша обратная связь! А мы в свою очередь будем и дальше радовать вас новыми интересными материалами из мира бисероплетения. До встречи, дорогие друзья!

Преимущества и недостатки параллельного и последовательного соединения лампочек

Нет ничего проще для электрика, чем подключить светильник. Но если приходится собирать люстру или бра с несколькими плафонами, часто возникает вопрос: «Как лучше соединить?» Чтобы понять, чем отличается последовательное и параллельное соединение лампочек – вспомним курс физики за 8 класс. Давайте заранее договоримся, что будем рассматривать как пример освещение в сетях 220 V AC, эта информация справедлива и для других напряжений и токов.

Последовательное соединение

Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, – распределяется согласно собственным сопротивлениям. При этом ток равняется частному напряжения и сопротивления, т.е.:

Где Rобщ – сумма сопротивлений всех элементов последовательно соединенной цепи.

Чем больше сопротивление – тем меньше ток.

Подсоединение потребителей последовательно

Чтобы соединить два и больше источника света последовательно, нужно концы от патронов соединить между собой так, как изображено на картинке, т.е. у крайних патронов останется по одному свободному проводу, на которые мы и подаем фазу (P или L) с нулем (N), а средние патроны соединяются друг с другом одним проводом.

Через лампу 100 Вт, при напряжении 220 В, течет ток чуть меньше чем 0,5 А. Если соединить две по этой схеме, ток упадет в два раза. Лампы будут светить в половину накала. Потребляемая мощность не сложится, а уменьшиться до 55 (примерно) с обеих. И так далее: чем больше ламп, тем меньше ток и яркость каждой отдельной.

  • ресурс ламп накаливания возрастает;
  • если перегорает одна – не горят и остальные;
  • если использовать приборы разной мощности, те, что больше, – практически не будут светиться, те, что меньше, – будут светиться нормально;
  • все элементы должны быть одинаковой мощности;
  • нельзя в светильник с таким соединением включать энергосберегающие лампы (светодиодные и компактные люминесцентные лампы).

Такое соединение отлично подходит в ситуациях, когда нужно создать мягкий свет, например, для бра. Так соединяются светодиоды в гирляндах. Огромный минус – это то, что при сгорании одного звена не светят и другие.

Параллельное соединение

В цепях, соединенных параллельно, к каждому из элементов прикладывается полное напряжение источника питания. При этом ток, протекающий через каждую из ветвей, зависит только от ее сопротивления. Провода от каждого патрона соединены между собой обоими концами.

  • если одна лампа перегорит – остальные продолжат выполнять свои функции;
  • каждая из цепей светит в полный накал независимо от своей мощности, потому что к каждой приложено полное напряжение;
  • можно вывести из светильника три, четыре и больше проводов (ноль и нужное количество фаз к выключателю) и включать нужное количество ламп или группу;
  • работают энергосберегающие лампочки.
Читайте также:  Фундамент из бутового камня – недорогой и по-настоящему надежный!

Чтобы включать свет по группам, соберите такую схему либо в корпусе светильника, либо в распределительной коробке.

Каждая из ламп включается своим выключателем, их в этом случае три, а включены две.

Законы последовательного и параллельного соединения проводников

Для последовательного соединения важно учитывать, что ток через все лампы протекает один и тот же. Это значит, что чем больше элементов в цепи, тем меньше через нее протекает ампер. Напряжение на каждой лампе равняется произведению тока на ее сопротивление (закон Ома). Увеличивая количество элементов, вы будете понижать напряжение на каждом из них.

В параллельной цепи каждая ветвь берет на себя необходимое ей количество тока, а напряжение прикладывается то, которое выдает источник питания (напр. Бытовая электросеть)

Смешанное соединение

Другое название этой схемы последовательно-параллельная цепь. В ветвях параллельной цепи включено последовательно несколько потребителей, например, накаливания, галогенных или светодиодных. На LED-матрицах часто применяется такая схема. Этот способ дает некоторые преимущества:

  • подключение отдельных групп лампочек на люстре (например, 6-рожковой);
  • если сгорит лампа – не будет гореть только одна группа, из строя выйдет только одна последовательная цепь, остальные, параллельно стоящие, будут светить;
  • группируйте лампы последовательно одной мощности, а параллельные цепи – разной, если это нужно.

Недостатки те же, что присущи последовательным цепям.

Схемы подключения других типов ламп

Чтобы правильно подключить другие виды осветительных приборов, нужно сначала узнать их принцип работы и ознакомиться со схемой подключения. Каждый из типов ламп требует определенных условий для работы. Процесс накаливания спирали совсем не предназначен для излучения света. В области больших мощностей и площади их заметно потеснили газоразрядные приборы.

Люминесцентные лампы

Кроме ламп накаливания, часто применяются и галогенные, и люминесцентные трубчатые лампы (ЛЛ). Последние распространены в административных зданиях, боксах для покраски автомобилей, гаражах, производственных и торговых помещениях. Немного реже их применяют дома, например, на кухне для подсветки рабочей зоны.

ЛЛ нельзя подключить напрямую к сети 220 В, для розжига нужно высокое напряжение, поэтому используется специальная схема:

  • дроссель, стартер, конденсатор (не обязательно);
  • электронный балласт.

Первая схема применяется все реже, отличается меньшим КПД, гудением дросселя и мерцанием светового потока, который часто не заметен глазу. Подключение электронного балласта часто изображено на корпусе.

Подключается либо одна лампу, либо две последовательно, в зависимости от ситуации и того, что есть в наличии, также и с электронным балластом.

Конденсатор между фазой и нулем нужен для компенсации реактивной мощности дросселя и снижения сдвига фазы, цепь запустится и без него.

Обратите внимание на то, как подсоединяются лампы, в освещении люминесцентным светом нельзя пользоваться теми же правилами, что и при работе с лампами накаливания. Похожим образом обстоит дело и с ДРЛ и ДНАТ-лампами, но они редко встречаются в быту, чаще в промышленных цехах и уличных фонарях.

Галогенные источники света

Этот тип часто применяется в точечных светильниках на подвесных и натяжных потолках. Подходят для освещения мест с повышенной влажностью, поскольку выпускаются для работы в цепях с пониженным напряжением, например, 12 вольт.

Для питания используют сетевой трансформатор 50 Гц, но габариты велики и со временем он начинает гудеть. Лучше для этого подойдет электронный трансформатор, на него приходит 220 В с частотой 50 Гц, а уходит 12 В переменного тока с частотой в несколько десятков кГц. В остальном подключение аналогичное с лампами накаливания.

Заключение

Правильно собирайте схемы в светильниках. Не подключайте энергосберегающие лампы последовательно и придерживайтесь схемы включения люминесцентных и галогенных светильников. Энергосберегающие лампы «не любят» пониженное напряжение и быстро сгорят, а люминесцентный светильник может и вовсе не зажечься.

Для подключения освещения подойдут клеммные колодки или зажимы Wago, тем более, если проводка алюминиевая, а провода у светильника медные. Главное – соблюдайте правила безопасности при работе с электрическими приборами.

Читайте также:  Уход за термомбельем: правила ручной и машинной стирки

Схема параллельного подключения лампочек в цепи

Начинающим электрикам довольно часто приходится сталкиваться с особенностями подключения того или иного электрооборудования. Ярким примером может считаться схема параллельного подключения ламп, как один из наиболее распространенных вариантов. Именно его используют профессионалы в быту при монтаже освещения, последовательная схема применяется сравнительно редко. Поэтому с целью недопущения ошибок во время параллельного подключения стоит рассмотреть вопрос более детально.

Что такое параллельное подключение?

Под параллельным подключением в электротехнике следует понимать такой способ соединения электрических приборов, при котором каждый из них имеет аналогичное соединение полюсов по отношению к источнику питания или в электрической цепи.

Для этого рассмотрим пример параллельного включения лампочек накаливания:

Рис. 1. Параллельное подключение ламп к источнику

Как видите, здесь каждая лампа от Л1 до Л4 соединяется одним контактом к фазному выводу, а вторым, к нулевому. Или в таком же порядке для цепи постоянного тока – один контакт лампы к плюсу, а второй к минусу. Таким образом, получается, что все выводы фазы одинаковые и соединены в одну точку, также в одну точку подключены и нулевые выводы. С технической стороны параллельное подключение может производиться любым количеством ламп от двух и более.

Особенностью этого соединения является подача напряжения от источника E в месте включения контакта от каждой лампы. Соответственно, каждая из ламп получает номинал питания, к примеру, 220 вольт сети придется на пару контактов. Следует отметить, что кроме ламп Ильича параллельное подключение подходит и для любых других типов осветительного оборудования (светодиодных лампочек, люминесцентных, галогенных и т.д.).

Помимо вышеприведенного примера можно встретить и другие способы параллельного подсоединения:

Рис. 2. Варианты смешанного параллельного подключения

Как видите на рисунке выше лампочки Л1 – Л3 на первой схеме имеют параллельное включение по отношению друг к другу. Однако по отношению к резистору R1 и диоду VD1 подключение всей группы будет последовательным. На второй схеме лампы Л1 – Л2 и Л3 – Л4 подключены последовательно по отношению друг к другу, но попарно Л1 – Л2 с парой Л3 – Л4 подключены параллельно. На практике важно учитывать не только особенности конфигурации цепи, но и физические параметры.

Физические параметры

Важным этапом при подключении галогенных, светодиодных или люминесцентных светильников являются физические данные. Основным параметром для всех ламп можно считать омическое сопротивление, на основании которого и рассчитывается потребляемая мощность.

Для примера рассмотрим вариант подключения приборов освещения, как классической резистивной нагрузки:

Рис. 3. Параллельное включение резистивной нагрузки

Так те же нити накаливания представляют собой чисто резистивную нагрузку, поэтому мы их будем рассчитывать, как сумму резисторов R1 – R3. Для параллельных схем включения вычисление суммарного сопротивления всех устройств производится исходя из соотношения:

После преобразования выражение получит вид:

Аналогичным образом вычисление производится для включения люминесцентных и светодиодных светильников. Заметьте, что при расчетах в идеальных условиях сопротивлением соединительных проводов пренебрегают. Такой прием актуален и для большинства осветительных приборов, так как величина получается несоизмеримо меньше. Однако в случае расчета слаботочных ламп или светодиодов сопротивлением проводов не всегда можно пренебречь, поэтому они также участвуют в расчетах.

Преимущества и недостатки

В домашних и производственных целях параллельное подключение широко используется для решения различных задач. При выборе такого способа важно учитывать все за и против, поэтому дальше мы рассмотрим преимущества и недостатки для освещения люминесцентными, накаливания, светодиодными или другими типами ламп.

К преимуществам схемы следует отнести:

  • на каждую лампу подается строго установленная величина напряжения, не зависимо от их сопротивления;
  • каждая лампа работает на полную мощность, выдавая заявленные номинальные параметры;
  • в случае перегорания одной из ламп в цепи остальные продолжат выполнять свои непосредственные функции без каких-либо изменений в штатном режиме.
Читайте также:  Характеристики и монтаж черепицы полимерпесчаной

Недостатки такого способа подключения в большей части связаны с экономическими аспектами или аварийными режимами работы:

  • требуется больший расход соединительных проводников при подключении на большие расстояния;
  • при повышении напряжения более номинального лампочка светится гораздо сильнее, из-за чего галогенные светильники и лампы Ильича будут чаще выходить со строя;
  • начинающие электрики или неискушенные в электротехнике могут запутаться на этапе подключения точечных или других светильников.

Практическое применение

Все соединения в электрических схемах подразделяются на последовательные и параллельные. На практике параллельная схема применяется для любого освещения у вас дома:

  • точечных светильников;
  • ламп в люстре;
  • модулей в светодиодной ленте и т.д.

Не зависимо от конкретного вида подключения и применяемого оборудования, схема будет идентична. В некоторых ситуациях, чтобы подключить точечных светильник применяется блок питания или электронный трансформатор, в других монтаж люминесцентных ламп производится напрямую от сети, что показано на рисунке ниже:

Рис. 4. Подключение светильников по комнатам

Видео по теме

Параллельное подключение лампочек

Всем тем, кто хоть сколько-нибудь разбирается в эксплуатации электрических цепей, наверняка известно, что обычные лампочки могут включаться как последовательно (одна вслед за другой), так и в параллель. Еще один способ их включения, называемый смешанным или комбинированным, предполагает последовательное и параллельное соединение этих изделий одновременно (смотрите приведенное ниже фото).

С проблемой выбора способа или электрической схемы, по которым осуществляется включение лампочек или светодиодов в бытовых условиях, приходится сталкиваться при необходимости увеличить число осветителей в квартире или в гирлянде. Вопрос, касающийся типовых ламп освещения 220 Вольт, обычно усложняется тем, что к этому моменту система электропроводки в квартире уже проложена.

При этом без знания основ электротехники и умения самостоятельно подсоединять лампочки в параллель рядовой пользователь вряд ли сможет обойтись.

Виды соединений

Параллельное

В наше время вопрос «как подключить лампу освещения?» приобретает особое значение, что объясняется повсеместным распространением точечных светильников, привлекающих к себе все большее внимание пользователей. При этом параллельное соединение лампочек считается классическим способом включения потребителей, рассчитанных на одно и то же напряжение (220 Вольт, в частности).

Одновременно с этим данный способ их коммутации обеспечивает следующие преимущества:

  • Во-первых, при таком включении выход одного осветительного прибора из строя не нарушает всю питающую сеть (оставшиеся подключенными исправные лампочки будут работать, правда, с чуть меньшей суммарной яркостью);
  • Во-вторых, число соединительных контактов в этом случае намного меньше, чем в последовательной цепи (клеммы лампочек объединяются только в двух точках);
  • И, наконец, проводов на изготовление сборки из параллельно соединенных ламп потребуется несколько меньше, так как они будут сосредоточены в одном месте (их не нужно соединять шлейфом).

Согласно известному из курса физики закону Ома, при параллельном подключении лампочек ток между ними распределяется, в соответствии с проводимостью каждой осветительной нити (или пропорционально их мощности). Чем мощнее и ярче по свечению включенная в одну из ветвей лампочка, тем больший ток она пропускает через свою накальную нить.

Обратите внимание! Согласно закону Кирхгофа общий ток в питающей цепи может быть определен как сумма его составляющих, протекающих через каждую отдельную лампу накаливания.

Последовательное и смешанное

В определенных рабочих ситуациях более выгодным считается последовательное соединение лампочек (смотрите фото ниже).

Последовательное подключение одинаковых световых нагрузок допускается в тех случаях, когда общее напряжение питания может быть поделено между несколькими отдельными потребителями.

Важно! Если однотипные лампочки подключаются в виде последовательной цепочки, то общее напряжение распределяется между ними равномерно, а ток через всю цепь течет одинаковый (согласно уже упоминавшимся ранее законам).

Такое включение допустимо только для низковольтных осветительных приборов (лампочек на 2,5 Вольта в гирлянде, например, или светодиодов на различные напряжения). А в производственных целях последовательное подсоединение ламп на 220 Вольт в нормальных условиях их эксплуатации не имеет смысла.

Читайте также:  ТОП-13 лучших производителей розеток и выключателей - рейтинг, цены, плюсы и минусы

Смешанное включение также может применяться лишь в исключительных случаях (когда питающее напряжение удается разделить между элементами последовательной цепочки, включающей звенья из параллельно соединенных ламп).

Обустройство параллельного включения

Для ознакомления с практической стороной мероприятий, в ходе которых формируется параллельное соединение ламп, следует рассмотреть приводимый ниже рисунок.

Из него следует, что при параллельном подключении точечных осветителей к ближней к сетевому вводу двойной колодке подсоединяется фазный (L) и нулевой (N) проводник питающей линии. Для того чтобы подвести питание ко всем остальным подключаемым в параллель светильникам, следует воспользоваться перемычками определенной длины, которые просто перебрасываются с соответствующей клеммы одного прибора на другой осветитель.

Дополнительная информация. При проектировании осветительных линий на участках схем, предполагающих параллельное включение ламп того или иного типа, должны соблюдаться правила нанесения графических обозначений.

На участках физического пересечения линий на схемах наносятся точка в месте контакта проводников и огибающая дуга, если они располагаются в разных плоскостях (пересекаются только на схеме, т. е. условно).

Особенности включения газоразрядных ламп

Подключение обычных ламп накаливания, порядок которого подробно описан выше, как правило, не вызывает у пользователей особых затруднений. Однако схема параллельного подключения галогенных и люминесцентных ламп содержит некоторые нюансы, которые нуждаются в отдельном рассмотрении.

Ознакомимся сначала с особенностями включения галогенных ламп, работающих при пониженных питающих напряжениях и монтируемых в классических подвесных потолках. Эти напряжения получают за счет использования в цепях понижающих трансформаторов с вторичными обмотками, рассчитанными на 6, 12 и 24 Вольта, которые размещаются там же (скрыты под натянутым полотном потолка).

Как правило, эти излучатели соединяются в параллельную цепочку и лишь после этого подключаются к соответствующим выводам трансформатора (смотрите фото далее по тексту).

На нем представлена схема включения ламп с помощью понижающего трансформатора; причем подводимое к нему сетевое напряжение коммутируется в отдельной распределительной коробке. Нулевой провод на этой схеме имеет синий цвет, а фазный, согласно требованиям ПУЭ, помечен коричневой расцветкой.

Важно! Выключатель, прерывающий цепь подачи питания на лампочки, согласно тому же ПУЭ устанавливается в разрыв фазного (коричневого) провода.

При формировании осветительных цепей галогенные лампы разбиваются обычно на группы, соединенные между собой в параллель в другой распределительной коробке. Прямо с нее совмещенные проводники прокладываются к вторичной обмотке трансформатора, рассчитанного на12 Вольт.

Требования стандартов регламентируют длину отводящего проводника в пределах двух метров, поскольку при большей их протяженности возможны потери напряжения и снижение яркости свечения лампочек.

Для люминесцентных ламп использование схем параллельного включения связано с желанием избавиться от такого неприятного явления, как эффект мерцания, значительно ухудшающего их эксплуатационные характеристики.

Дополнительная информация. Современные ПРА (пускорегулирующие устройства) электронного типа частично снимают проблему мерцания, однако за это приходится платить высокую цену.

Добиться существенного уменьшения вредных для глаза человека пульсаций, не приобретая дорогие электронные балласты, удается за счет применения двухламповой схемы светильника. В этом случае напряжение питания на одну из параллельно включенных ламп поступает с небольшим сдвигом во времени (по фазе). В результате такого искусственного приема суммарное световое поле системы из 2-х осветителей несколько выравнивается.

В заключение отметим, что при параллельном соединении нескольких ламп следует обращать внимание на надежность образующихся при их подключении контактов. Нарушение хотя бы одного из этих соединений может привести к окислению и последующему разрушению всего клеммника.

Видео

Последовательное и параллельное соединение лампочек — схемы применения в быту.

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

    две лампы вкрученные в патроны
    два провода питания выходящие из патронов
Читайте также:  Счетчик тепла на батарею: принцип работы накладного датчика отопления в квартире

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности – 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна “поджечь” двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении – другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Читайте также:  Чем примечательны дома из опилкобетона — 2 способа строительства

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена “одноименка”.

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

Где же можно в быту, применить такую казалось бы не практичную схему?

Самое широко известное использование подобных конструкций – это елочные новогодние гирлянды.

Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход – включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически “вечно”. Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.

При одноименных фазах, лампочки светиться не будут (например фА ввод№1 – фА ввод№2).

А при разных (фА ввод№1 – фВ ввод№2) – они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно – в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.

Напряжение на них подается одновременно и всегда составляет номинальные 220В.

Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, “вечная” лампочка и т.д).

Как параллельно соединить лампочки

Лампы в повседневной жизни, как правило, соединяют параллельно. Хотя бывают ситуации, что наиболее выгодным оказывается соединение последовательным способом. Так как в последние годы наблюдается настоящий бум точечных источников света, в каждой квартире всё больше и больше увеличивается количество этих устройств.

Читайте также:  Что входит в обслуживание настенных котлов

Если возникает необходимость заменить вышедшую из строя лампу, то это не вызывает особых вопросов. Намного больше сложностей возникает, когда требуется расширить количество источников света. Если планируете провести всю работу собственными силами, нужно знать, какие преимущества имеют каждая из разновидностей соединений, а также уметь составить схему.

Что значит подключить осветительные устройства параллельно

Что кроется в понятии «параллельного соединения»? При такой схеме лампа соединяется с фазой и нулём. Если требуется подключить сразу два источника света, то подающие на них ток провода скручиваются. Тут главное проверить, чтобы сечение проводов совпадало с идущей на них нагрузкой. Не все светильники имеют сходное напряжение, яркость их изначально закладывается производителем. Если одна из лампочек перегорает, все остальные продолжают функционировать по-прежнему.

Справка. В быту, при необходимости объединить в одну цепь несколько осветительных приборов, никакие провода не скручивают. Берут обычный кабель, а на него уже подключают нужные устройства.

Существует несколько разновидностей параллельного подключения:

  • оно может быть лучевым (в этом случае к каждому устройству подходит собственный кабель);
  • бывает оно и шлейфным (в этом случае на первое в цепи устройство подаётся фаза и нуль, далее кабель частично идёт на все остальные светильники, а на последний в цепи подают обе части кабеля).

Важно! Если требуется подсоединить галогенные светильники, обладающие трансформатором, то нужно помнить, что их подключают на вторичную обмотку преобразователя посредством клеммных колодок.

Параллельное подключение зачастую используют и для исправления некоторых недостатков аппаратуры. Так, главное больное место всех люминесцентных ламп — их раздражающее мерцание. Поправить это дело может устройство, регулирующее пуск, но стоит оно дорого. Можно подключить две лампы по параллельной схеме и к одной из них подсоединить конденсатор, который будет сдвигать фазу.

Преимущества и недостатки параллельного соединения

В параллельно соединённых электрических цепях на каждый подключённыей элемент поступает полное напряжение от источника энергии. Электрический ток, который проходит через любую из отдельных ветвей, зависит исключительно от сопротивления этой ветви. К каждому из патронов подведены провода в виде скрутки.

Положительные моменты данного типа соединения:

  • выход из строя одного из элементов не нарушает работу остальных;
  • любая из цепей соединения даёт максимально возможный свет, независимо от того, какую мощность имеет, ведь на любую из ветвей подведено полное напряжение;
  • от одного светильника возможно отвести различное количество проводов — потребуется один нуль и нужное количество фаз, что позволит подключить столько ламп, сколько будет нужно;
  • по такой схеме могут работать энергосберегающие лампы.

Отрицательных моментов в этой схеме не обнаружено.

Чтобы распределить световые устройства по группам, нужно смонтировать схему, приведённую на рисунке либо в корпусе самого светильника, либо сделать это при помощи распредкоробки.

За работу каждого светильника отвечает собственный выключатель.

Применение в быту

Наиболее распространённая схема параллельного подключения представлена в обычных ёлочных гирляндах.

Применяется эта схема и в других ситуациях. Например, можно:

  • смонтировать бюджетную подсветку в коридоре большой длины;
  • не тратиться на покупку новой лампы, так как они часто перегорают, а подключить другую;
  • увеличить срок использования лампочек — меняем две лампы на шестьдесят ватт на одну в сто ватт.

Справка. Бывалые электрики частенько применяют это, чтобы выявить фазу в сети на три фазы.

Зачастую галогенные и обычные лампы накаливания большой мощности используют в различных мастерских и гаражах для того, чтобы отапливать помещение. Две лампы в один киловатт мощностью подключают последовательно и размещают в короб из металла, который ставят на кирпичи. Такой обогреватель способен прогреться до шестидесяти градусов тепла. Правда, сами лампы приходится часто менять по причине того, что они быстро перегорают.

Схема параллельного подключения распространена достаточно широко. Применить её можно в совершенно любом помещении. Это может быть подсветка, лампы в люстре, уличное освещение. Её прелесть в том, что каждым источником света можно управлять отдельно — остальные этому совершенно не мешают.

Единственное, что нужно — включить в схему необходимое количество выключателей. В жилых домах по такой схеме работают не только осветительные приборы, но и все остальные, которые питаются электричеством.

Справка. Очень часто, когда требуется соединить между собой светодиодные осветительные приборы, используют подключение смешанного типа. Делают цепочку светильников, которые соединяют последовательно, а затем параллельным соединением подключают к другой такой же цепочке.

Правила параллельного соединения, схема

Все устройства, которые соединены параллельно или последовательно, функционируют по собственным правилам. Они базируются на основных законах электротехники и некоторых тонкостях.

Порой эти тонкости не являются очевидными для тех, кто мало разбирается в теме. Работая с той или иной схемой подключения, нужно учитывать:

  • для последовательного соединения характерны одинаковые показатели тока на всех участках;
  • в каждом конкретном виде соединений закон Ома приобретает собственное значение — в последовательном подключении напряжение соответствует напряжению на всех частях цепи;
  • при параллельном соединении напряжение отдельных участков цепи не складывается — оно одинаково везде;
  • сила тока при соединении параллельного типа соответствует общей силе тока всех ветвей цепи.

Как лучше подключить лампочки последовательно или параллельно

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель. Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например. Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

  1. Последовательное соединение
  2. Параллельное включение
  3. Законы смешанного соединения
  4. Типы ламп и схемы подключения
  5. Люминесцентные лампы
  6. Галогенные источники и светодиодные лампы

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.

При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.

Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:

  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Законы смешанного соединения

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения. При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: